

BIRMINGHAM—MUMBAI

Domain-Driven Design with Golang
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Gebin George

Publishing Product Manager: Pooja Yadav

Senior Editor: Kinnari Chohan

Technical Editor: Pradeep Sahu

Copy Editor: Safis Editing

Project Coordinator: Deeksha Thakkar

Proofreader: Safis Editing

Indexer: Subalakshmi Govindhan

Production Designer: Aparna Bhagat

Developer Relations Marketing Executive: Sonakshi Bubbar

First published: December 2022

Production reference: 1301122

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80461-345-0

www.packt.com

To my partner Hannah, who is always supportive of my schemes, no matter how ludicrous
(writing this book being one of my wilder ones).

To the memory of my mother Sarah, whom I miss every day and I’m certain would have
displayed this book proudly (but never have read it).

Contributors

About the author
Matthew Boyle is an experienced technical leader in the field of distributed systems, specializing in
using Go. He has worked at huge companies such as Cloudflare and General Electric, as well as
exciting high-growth startups such as Curve and Crowdcube. Matt has been writing Go for
production since 2018 and often shares blog posts and fun trivia about Go over on Twitter
(@MattJamesBoyle).

About the reviewers
Matthew Williams is a (mainly) backend Software Engineer generally working in Java or Kotlin,
who has dabbled in Go. Regardless of the language used, he is a proponent of Domain-Driven
Design, Test-Driven Development and occasionally, Frustration-Driven Development. Originally a
University of Birmingham Computer Science classmate of the author, he has spent time working
across both the public and private sectors in the UK and Australia. Working for the likes of the
Science and Technology Facilities Council, SAP, and Tyro on domains including scientific research
proposals, e-commerce, and payments, the need to understand and use the language of the domain
has always been clear.

Chris Shepherd is currently employed as a Systems Engineer building large scale, highly-available
and robust distributed systems. He has worked within software engineering for more than seven
years, the majority of which have been dedicated to writing Go. He has worked for both big-name
companies, such as IBM and Cloudflare, and fast paced, hyper-growth startups, spanning across
many different industries, including finance, cybersecurity, and the public sector. He received a BSc
in Computer Science from De Montfort University and is currently employed by Cloudflare, where
he designs, develops, and maintains highly scalable event-driven microservices in Go.

Table of Contents

Preface

Part 1: Introduction to Domain-Driven Design

1

A Brief History of Domain-Driven Design

The world before DDD
So, what are OOD patterns?
Eric Evans and DDD
Three pillars of DDD
Adoption of DDD
When should you use DDD?
Summary
Further reading

2

Understanding Domains, Ubiquitous Language, and
Bounded Contexts

Technical requirements
Setting the scene
Domains and sub-domains
Ubiquitous language
Benefits of ubiquitous language
Bounded contexts
Open Host Service
Published language
Anti-corruption layer
Summary

Further reading

3

Entities, Value Objects, and Aggregates

Technical requirements
Working with entities
Generating good identifiers
A warning when defining entities
A note on object-relational mapping
Working with value objects
How should I decide whether to use an entity or value object?
The aggregate pattern
Discovering aggregates
Designing aggregates
Aggregates beyond a single bounded context
Summary
Further reading

4

Exploring Factories, Repositories, and Services

Technical requirements
Introducing the factory pattern
Entity factories
Implementing the repository pattern in Golang
Understanding services
Domain services
Application services

Summary

Part 2: Real -World Domain-Driven Design with Golang

5

Applying Domain-Driven Design to a Monolithic
Application

Technical requirements
What do we mean when we say monolithic application?
Setting the scene
Getting started with our CoffeeCo system
Implementing our product repository
Adding an infrastructure service for payment handling
Paying with CoffeeBux
Adding store-specific discounts
Extending our service
Summary
Further reading

6

Building a Microservice Using DDD

Technical requirements
What do we mean by microservices?
What are the benefits of microservices?
What are the downsides of microservices?
Should my company adopt microservices?
Setting the scene (again)
Building a recommendation system

Revisiting the anti-corruption layer
Exposing our service via an open host service
Summary

7

DDD for Distributed Systems

Technical requirements
What is a distributed system?
CAP theorem and databases
Distributed system patterns
CQRS
EDA
Dealing with failure
Two-phase commit (2PC)
The saga pattern
What is a message bus?
Kafka
RabbitMQ
NATS
Summary
Further reading

8

TDD, BDD, and DDD

Technical requirements
TDD
Adding a test

Run the test we just wrote – it should fail (and we should expect
it to)
Write as little code as possible to pass the test
Refactoring
BDD
Summary

Index

Other Books You May Enjoy

Preface
Welcome to this book on Domain-driven design with Golang!

DDD is one of the most sought-after skills in the industry. This book provides you with step-by-step
explanations of essential concepts, and practical examples that will see you introducing DDD in your
Go projects in no time.

Domain-Driven Design with Golang starts by helping you gain a basic understanding of DDD, and
then covers all the important patterns such as bounded context, Ubiquitous Language, aggregates,
and more. The latter half of this book deals with the real-world implementation of Domain-driven
design patterns, and teaches you to build two systems whilst applying DDD principles, which will be
a valuable addition to your portfolio. Finally, you’ll find out how to build a microservice, along with
learning how DDD-based microservices can be part of a greater distributed system.

Although the focus of this book is Golang, by the end of this book, you’ll be able to confidently use
DDD patterns outside of Go and apply them to other languages and even distributed systems.

Who this book is for
This book is intended for intermediate Go developers who are looking to take their enterprise skills to
the next level, however, I really hope I have made it accessible enough that beginners can follow
along too.

If you have never written Go before, but have some familiarity with DDD, I hope this book will help
you use your expertise to write Domain-driven Go in an idiomatic way.

Finally, if you are an expert in DDD and in Golang, I hope this book serves as a great reference that
you can pick up from time to time when you can’t quite remember something.

What this book covers
Chapter 1, A Brief History of Domain-Driven Design helps you learn about the origins of DDD – no
Golang in this chapter!

Chapter 2, Ubiquitous Language, Bounded Context, Domains, and Sub-Domains teaches you these
core domain-driven topics.

Chapter 3, Aggregates, Entities, and Value Objects will help you learn a few more DDD topics.

Chapter 4, Factories, Repositories, and Services is the final chapter of Part 1, and sees us learn three
more DDD patterns that will help cement our understanding.

Chapter 5, Applying DDD to a Monolithic Application teaches how we can apply domain-driven
design to both an existing monolithic application, but also to a new one we will build together.

Chapter 6, Building a Microservice using DDD shows how to build a microservice using DDD that is
resilient to failure.

Chapter 7, DDD for Distributed Systems takes you through how DDD can be applied to entire
distributed systems as well as covering topics such as message queues at a foundational level.

Chapter 8, TDD, BDD and BDD is a bonus chapter that covers how test-driven development,
behaviour-driven development, and domain-driven development can be complimentary patterns.

To get the most out of this book

Software/hardware covered in the book Operating system requirements

Go 1.19.3 or above Windows, macOS, or Linux

VS Code or Goland

If you are using the digital version of this book, we advise you to type the code yourself or
access the code from the book’s GitHub repository (a link is available in the next section).
Doing so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code fi les
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang. If there’s an update to the

https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang

code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/lXo4T.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Firstly,
we will define a Point in the following code block.”

A block of code is set as follows:

=== RUN Test_Point

value_objects_test.go:13: a and b were not equal

--- FAIL: Test_Point (0.00s)

TIPS OR IMPORTANT NOTES
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report this to us.
Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

https://github.com/PacktPublishing/
https://packt.link/lXo4T
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/

Share Your Thoughts
Once you’ve read Domain-Driven Design with Golang, we’d love to hear your thoughts! Scan the
QR code below to go straight to the Amazon review page for this book and share your feedback.

https://packt.link/r/1804613452

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/r/1804613452

https://packt.link/free-ebook/9781804613450

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

clbr://internal.invalid/book/OEBPS/B19042_Preface.xhtml

Part 1: Introduction to Domain-Driven Design
Part 1 of Domain-driven design with Golang focuses on ensuring you are familiar with the core
DDD concepts. We start by exploring the history of DDD, as I truly believe that context is important
when applying software patterns. We then move on to exploring each DDD concept in isolation by
firstly learning the theory behind them and then applying them with Golang code. This lays a great
foundation for Part 2, where we will build two projects from scratch and use all the DDD concepts
we learnt in this first part.

This part comprises the following chapters:

Chapter 1, A Brief History of DDD

Chapter 2, Ubiquitous Language, Bounded Context, Domains, and Subdomains

Chapter 3, Aggregates, Entities, and Value Objects

Chapter 4, Factories, Repositories, and Services

1

A Brief History of Domain-Driven Design
Welcome to this book on domain-driven design (DDD) using Golang. If you have never heard of
DDD before, I hope that by the end of this book, you will have a good understanding of what it is,
where it came from, how it can be applied, and how to implement some of the patterns popular
among DDD proponents using Golang.

You might be surprised to discover that a large part of the first half of this book will be defining
terms and discussing patterns on how to work with others to build systems that represent the real
world. At its core, this is what DDD is about. Don’t worry though; there will be plenty of Golang
examples, and in Part 2, we will dive deeper into building out DDD-based systems.

In this chapter, we will explore how DDD emerged and gained popularity. I find this context
particularly valuable as we delve deeper into the topic as it helps you understand why to use it, not
just how.

In this chapter, we will cover the following topics:

The world before DDD

Eric Evans and DDD

Three pillars of DDD

Adoption of DDD

When should you use DDD?

The world before DDD
Before 2003 and the inception of DDD, engineers and architects were thinking about how to organize
their software and systems in a way that represented the problem space (domain) they were trying to
model. As software became more and more complicated, it became apparent that the closer your
system was to the domain, the easier it was to make changes. More importantly, it was easier for
other stakeholders to converse with engineers as there was less of a disconnect between the real-
world model of the problem space and the system model.

This was the issue that Eric Evans, a software engineer, was facing—the increased complexity of
systems and failures in creating and maintaining them. This led him to write the book Domain-Driven

Design: Tackling Complexity in the Heart of Software, Addison-Wesley Professional, in 2003—the
first book on the subject of DDD.

“...(The) book Domain-Driven Design was an attempt to capture for people the successful practices
that I had seen or used, some of which have been around for a long time and some of which are
relatively new, and put together into a coherent set of practices with clear names so that maybe we
can have broader success than we have in the past… a great deal of domain-driven design comes
straight out of good old-fashioned object-oriented design patterns.” (Evans, in an interview with
Software Engineering Radio, 2019, Episode 8: https://youtu.be/7yUONWp-CxM)

What does Evans mean when he refers to object-oriented design (OOD) principles? It used to be a
given that everyone would write some object-oriented (OO) code as they began their journey into
software development, but that is not necessarily the case anymore. If you are reading this book and
Golang is your first programming language, it might be that you have never written traditional OO
code.

OO programming (OOP) is a way to write programs that allows us to organize our code around
objects rather than functions. We give these objects attributes and methods that define behavior.

OOP is particularly popular for large complex code bases as OOP is much easier to reason about. One
of the most popular OOP languages is Java.

If we were building a human resources (HR) system, we might want to model an employee. If we
were using Java, we might write this as follows:

public class Employee {

 private String firstName;

 private String lastName;

 public Employee (String firstName, String lastName) {

 this.firstName = firstName;

 this.lastName = lastName;

 }

 public String getFirstName() {

 return this.firstName;

 }

 public String getLastName() {

 return this.lastName;

 }

 public String toString() {

 return "Employee(" + this.firstName + "," + this.lastName + ")";

 }

}

As you can see from this basic example, the code is readable, and we can easily model an employee
in the system. When the business requires us to print a list of all employees or add the ability to store
an employee’s location in their profile, you can hopefully see how our current Employee class forms
the basis to add such functionality.

https://youtu.be/7yUONWp-CxM

Now that we have learned what OO code looks like, we can review some of the design patterns that
are commonly used and that inspired DDD.

So, what are OOD patterns?

Design patterns were first described in 1977 in a book titled A Pattern Language: Towns, Buildings,
Construction, by Christopher Alexander, Oxford University Press. This book has nothing to do with
software engineering, yet it inspired one of the most influential books on OOP design, called Design
Patterns, Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, Addison-Wesley Professional. This book was released in 1995 but still
features at the top of computer science students’ reading lists in 2022. You may have heard of this
book by its colloquial name, the Gang of Four (or GoF), in reference to its four authors.

In the GoF book, 23 design patterns are outlined for what the authors believe lead to scalable,
maintainable OO software. Going through each pattern is beyond the scope of this book (the GoF
book comprises ~400 pages).

However, if you have read the GoF book, as you proceed to learn more about DDD, it is worth taking
a pause and seeing whether you can see where Evans’s inspiration came from. The GoF patterns are
split into the following sections, which are equally important when considering DDD:

Creational patterns are patterns concerned with creating objects instead of creating objects directly. This gives more flexibility to
the program in deciding which object type to create, given the current context.

Structural patterns are concerned with how you compose objects within your program to achieve certain functionality.

Behavioral patterns are concerned with how objects communicate.

Now that we have learned a little about what inspired DDD, let’s talk about the book that started it
all.

Eric Evans and DDD
Evans’s book (sometimes called the Big Blue Book) has become a must-read title for all software
engineers and architects. Whenever we talk about DDD, this is the book that started it all. In the
book, he gave a common language and a set of principles to design systems that have been refined
and clarified over the years by members of an ever-growing community.

The Big Blue Book has sold over 100,000 copies and consistently remains in the top 10 computing
books on Amazon. Martin Fowler, a famous thought leader in the software engineering space,
describes the book as “an essential read for serious software engineers” (in his martinFowler.com
blog, 2020: https://martinfowler.com/bliki/DomainDrivenDesign.html).

http://martinfowler.com/
https://martinfowler.com/bliki/DomainDrivenDesign.html

However, the book is not without flaws. It has received criticism for being hard to read. In his review,
Matt Carroll states: “The book is written in a dialect approaching that of academia. Big words, long
sentences, and introduction to concepts that are so abstract that they would be unintelligible without
the accompanying examples. In fact, some parts continue to be unintelligible even with the examples”
(in his Medium blog, 2016: https://mattcarroll.medium.com/book-review-domain-driven-design-
42c96a75a72).

Regardless of the criticism, the book is still as relevant and celebrated as it was years ago when it was
published. One reason is that the book outlined three pillars that can be used independently or
together to improve complex software projects. In the next section, we will review these pillars.

Three pil lars of DDD
In this book, Evans introduced three main concepts (sometimes called pillars) of DDD. These are
ubiquitous language, strategic design, and tactical design. We have summarized them in this
section, but we go into each in more depth later in this book.
Ubiquitous language
Ubiquitous language is the term we use to describe the process of building a common language we
can use when talking about our domain. This language should be spoken by everyone in the team—
developers and business folk alike. It unites the team by ensuring there is no ambiguity in
communication.

As with real languages, the ubiquitous language should evolve as your team’s understanding of the
domain increases. It should never be imposed by domain experts, for it is not a business language.
We will discuss how to develop a ubiquitous language in Chapter 2.
Strategic design

Strategic design is a phase of the DDD process in which we map out the business domain and define
bounded contexts.

The goal of strategic design is to ensure that you architect your system in a way focused on business
outcomes. We do this by first mapping out a domain model, which is an abstract representation of
the problem space. If you were working on a shipping system, your domain model might look like
this:

https://mattcarroll.medium.com/book-review-domain-driven-design-42c96a75a72

Figure 1.1 – A domain model diagram representing a shipping domain

Notice how shipping is at the center of the diagram? This is part of the core domain, and all the
surrounding points are there to support shipping.

There is more work to be done here to create bounded contexts, but even at this very early stage of
the DDD process, you can start to think about how your system might look.

We will talk about bounded contexts in much more detail in Chapter 2.
Tactical design

Tactical design is where we begin to get into the specifics of how our system will look. In the tactical
design phase, we begin talking about entities, aggregates, and value objects, which also happens to
be the title of Chapter 3 of this book. We will use these patterns to help us define software
boundaries.

Adoption of DDD
DDD has remained popular since its inception, as depicted in the following screenshot, which shows
a trend line in a Google Trends graph.

Figure 1.2 – Google Trends graph of searches for DDD

Indeed, it is just as valuable to learn DDD (maybe more so) now as in 2004 (as far back as Google
Trends goes).

Although Evans laid the foundation for DDD, it has remained relevant for nearly 2 decades because,
in Evans’s own words, “smart and innovative people have shaken things up repeatedly.” These
people have taken the fundamentals outlined in a DDD and created new concepts, which have
enabled DDD to remain relevant, even though the way we write software has changed quite
dramatically.

Some of the books highlighted by Evans are listed here:

Greg Young and his work on Command Query Responsibility Segregation (CQRS): CQRS is a pattern that emerged to capture
all application changes as a sequence of events. It allows the segregation of read and write events from the database and can help
maximize application performance, scalability, and security. This is particularly popular in large enterprise software.

Domain-Driven Design Quickly: This book was released in 2006 and was (and still is) free; you can read it here:
https://www.infoq.com/minibooks/domain-driven-design-quickly/. Evans likes this book as its simple and succinct nature made
DDD accessible to everyone.

Vaughn Vernon and his book Implementing Domain-Driven Design: Evans described Vernon’s book as “the most ambitious book
since my own.” The community has affectionately called this book the Big Red Book. This book refreshed a lot of the ideas that
Evans outlined originally and focused more on how you can implement DDD.

Big companies such as Microsoft, Amazon, and IBM use DDD internally and guide how you can use
it too. It is, therefore, still a great time investment to learn about DDD today.

Is DDD always applicable though? Just because big companies use it, it does not necessarily mean it
is a good fit for your side project. In the next section, we explore this in more detail.

When should you use DDD?
DDD works best when applied to large, complex systems. A surprising number of the applications
systems engineers write today are basic CRUD (short for create, read, update, and delete)
applications. Applying DD development to such applications would be overkill and likely make
delivery slower and more complicated.

In the Big Red Book, provides a helpful DDD scorecard. Here is a simplified version of the
scorecard:

Is your project . . . Points Additional thoughts

Mostly doing simple create, reads,
updates, and deletes from the

0 Sometimes, evaluating simple can be tricky. If you
have lots of business logic between the input and the

https://www.infoq.com/minibooks/domain-driven-design-quickly/

database? output, your application might not fit into this
category. If all you are doing is validating the input
and then passing it through to the database layer, you
are in this category.

Does your application have fewer
than 30 user stories/business
flows?

1 User stories often take this format—as a user, I want
an X so that I can Y. Does your system have 30 of
these flows? Is it likely to have much more in the
future, or are changes mostly minor updates at this
point? If it’s fewer than 30, don’t give your system
the point here.

Does your application have 40+
user/stories/business flows?

2 We’re starting to enter the territory where we might
want to consider DDD. Vaughn correctly highlights
that we often do not identify complexity early
enough and must pay for that decision later.
Consider this your early warning that you are likely
building a complex system.

Is the application likely to grow in
complexity?

3 Some applications start simple, but there is a clear
path to complexity. For example, if you were
bootstrapping a startup, you might have something
simple for the first few months. But as you attract
funding, you know you will have to step up the
complexity of the problem you’re solving.

The application will be around for
a long time, and the changes you
predict you need to make will not
be simple.

4 There are very few systems that don’t undergo
regular change.

Understanding the complexity of the changes
necessary is important to deciding whether DDD is
right for you.

Updating a holiday booking system to understand
next year’s public holidays versus making a crypto
exchange to support a new protocol are different

classes of problems—the latter being worthy of the
points for this category.

You don’t understand the domain
because it is new, and as far as you
are aware, no one has ever built a
system like this before.

5 Modeling and defining a domain is DDD’s bread
and butter.

Table 1.1 – DDD scorecard

If you score more than 7 points on the table, your application is a great candidate for DDD.

If you have scored less than 7, you may still benefit from some of the principles we will discuss in
this book, but it might be that the time investment necessary to implement DDD properly is not worth
it.

Committing to following the DDD principles is precisely that—a commitment. It cannot come from
engineering; it needs to be a decision involving all project stakeholders. It requires time and effort to
get the domain, language, and contexts correct and needs strong involvement from the domain
experts. It also requires engineers to think one level higher than software and to think about behavior
first.

Summary
In this chapter, we have explored the context in which DDD came to exist, its adoption over time, and
an overview of some core concepts. We ended the chapter by highlighting a simple score system that
you can use as a reference when discussing DDD adoption with your team.

You should now understand the context of how DDD emerged and have an idea of when it might be
appropriate to use it.

In the next chapter. we will dig deeper into some of the core concepts of DDD as we discuss
ubiquitous language, bounded context, domains, and subdomains.

Further reading
For more information, please refer to the following resources:

Design a DDD-oriented microservice by Microsoft (2022); available at https://docs.microsoft.com/en-
us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/ddd-oriented-microservice

Find Your Business Domains to Start Refactoring Monolithic Applications by Amazon Web Services (AWS) (2022); available at
https://aws.amazon.com/blogs/mt/find-your-business-domains-to-start-refactoring-monolithic-applications/

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/ddd-oriented-microservice
https://aws.amazon.com/blogs/mt/find-your-business-domains-to-start-refactoring-monolithic-applications/

Apply Domain-Driven Design to microservices architecture by IBM; available at
https://www.ibm.com/garage/method/practices/code/domain-driven-design/

https://www.ibm.com/garage/method/practices/code/domain-driven-design/

2

Understanding Domains, Ubiquitous Language, and
Bounded Contexts
In this chapter, we will introduce some of the core concepts of domain-driven design (DDD). For
those who have never worked with DDD before, it should cover enough of the details so that you
understand the fundamental concepts. For those with more experience, it should serve as a refresher. I
hope that after you have completed this book, you will also be able to use this chapter as a reference
when applying DDD in the real world.

I have used real-life scenarios wherever possible to make things as clear as possible. This starts with
the Setting the scene section, so be sure to read that even if you’re skimming!

By the end of the chapter, you should be able to answer the following questions:

What is a domain?

What is a sub-domain?

What does ubiquitous language mean?

What is a bounded context?

Technical requirements
In this chapter, we will write a small amount of Golang code. To be able to run it, you will need the
following:

Golang installation: You can find instructions to install it here: https://go.dev/doc/install. The code in this chapter was written
with Go 1.19.3 installed, so anything later than this should be fine.

A text editor or IDE: Some popular options are VS Code (https://code.visualstudio.com/download) and GoLand
(https://www.jetbrains.com/help/go/installation-guide.html).

GitHub repository: https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter2.

Setting the scene
You have recently been promoted to be the team lead for a brand-new engineering team in your
company, the payments and subscriptions team. As this is a new area for you, you diligently organize
time with experts in the department to discuss the basics of the domain and how it works. Here is
their response:

https://go.dev/doc/install
https://code.visualstudio.com/download
https://www.jetbrains.com/help/go/installation-guide.html
https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter2

“When a lead uses our app for the first time, they must pick one of three subscription plans. These
are basic, premium, and exclusive. Depending on which they pick determines which features they get
access to within the app. This may change over time. Once a subscription plan has been created, we
consider that the lead has converted to a customer, and we call them a customer until they churn. At
this point, we call them a lead again. After 6 months, we call them a lost lead and we might target
them with a re-engagement campaign, which could include a discount code. Once a plan is created,
we set up a recurring payment to capture funds from the customer by direct debit.”

Excitedly, you run off and define the following interfaces as a starting point for the new application
your team will be building:

package chapter2

import (

 "context"

)

type UserType = int

type SubscriptionType = int

const (

 unknownUserType UserType = iota

 lead

 customer

 churned

 lostLead

)

const (

 unknownSubscriptionType SubscriptionType = iota

 basic

 premium

 exclusive

)

type UserAddRequest struct {

 UserType UserType

 Email string

 SubType SubscriptionType

 PaymentDetails PaymentDetails

}

type UserModifyRequest struct {

 ID string

 UserType UserType

 Email string

 SubType SubscriptionType

 PaymentDetails PaymentDetails

}

type User struct {

 ID string

 PaymentDetails PaymentDetails

}

type PaymentDetails struct {

 stripeTokenID string

}

type UserManager interface {

 AddUser(ctx context.Context, request UserAddRequest) (User, error)

 ModifyUser(ctx context.Context, request UserModifyRequest) (User, error)

}

We’ll revisit this as we learn more about DDD.

Domains and sub-domains
In the Setting the scene section, we outlined that we are going to be building a payments and
subscriptions system. These are our domains. According to Eric Evans, domains are “a sphere of
knowledge, influence, or activity.” (Domain-Driven Design, Addison-Wesley Professional).

The domain is the central entity in DDD; it is what we will model our entire language and system
around. Another way to think of it is the world of business. Every time you read the phrase domain-
driven design, you could read it as business problem-driven design.

Deciding on domains is a challenging problem and not always as obvious as in our example. In our
example, we have two distinct domains—payments and subscriptions. Some teams may choose to
treat these both as a single domain, which would be fine, too; DDD is not a science.

Bigger companies will often organize their teams around domains. In a mature organization, this will
be a discussion that includes stakeholders from all departments to land on an organizational structure
that makes sense. As new domains are discovered and teams grow, teams may split into new domain-
based teams.

Domains and sub-domains can be used almost interchangeably. We tend to use a sub-domain to
signal that the domain we are talking about is a child of a higher-level domain. In our example, we
know that our payment and subscription domains are sub-domains of a much larger business domain.
Therefore, we may refer to them as sub-domains, depending on the context of our conversation.

Ubiquitous language
Ubiquitous language is the overlap of the language that domain experts and technical experts use.
The following Venn diagram highlights this:

Figure 2.1 – Ubiquitous language

In the Setting the scene section, we highlighted interesting words that the experts used in your
conversation. That language has a specific meaning in your team that might not hold for other
companies or teams. For example, what is referred to as a customer in your team might mean
something slightly different to the marketing team.

The highlighted words are your team’s ubiquitous language. It is a shared language, unique and
specific to your team. Whenever your team talks about a customer or a lost lead, there should be no
confusion about what this means. It is often helpful to keep a glossary of terms in your team’s wiki or
documentation that is reviewed regularly. Although domain experts are fundamental to definitions,
engineers must challenge them and think about edge cases to ensure the definitions are robust.

This language should be used when discussing requirements and system design and should even be
used in the source code itself. Plus, it should evolve; therefore, you should spend time evaluating and
updating it regularly (perhaps during sprint planning if you’re an agile team).

This sounds like a lot of effort, so let’s discuss the benefits of using it.

Benefits of ubiquitous language

One of the major reasons IT projects fail is because a requirement got lost in translation. For
example, the business folks asked their team to support multiple accounts per customer. However,
due to historical decisions and assumptions made about the business, their system doesn’t have a
customer entity. There were strong assumptions made all over the system that there would only ever
be one user per account. What could have potentially been a trivial change is now a hugely risky
project that could span multiple quarters. Furthermore, notice the use of the term user and not the
term customer in the description. This seems a minor distinction, but the fact the engineers were not
thinking in terms of the business and using ubiquitous language is likely a reason this important
invariant was missed.

We mentioned that our ubiquitous language should be used in the source code itself. Let’s take
another look at some of the code we wrote in the Setting the scene section:

type UserType = int

type subscriptionType = int

const (

 unknownUserType UserType = iota

 lead

 customer

 churned

 lostLead

)

const (

 unknownSubscriptionType subscriptionType = iota

 basic

 premium

 exclusive

)

We have done a good job here of using ubiquitous language in our source code. Whenever the
domain experts talk about a subscription, we do not need to do any mental gymnastics to find a
system representation of it.

We also created a userType, but the discussion we had with the domain experts did not mention the
term user at all. This would be a good opportunity to discuss this specific term and add it to your
team’s ubiquitous language glossary to ensure when we use the term user, we are all talking about the
same thing.

Some further code we wrote was this:

type UserAddRequest struct {

 userType UserType

 email string

 subType subscriptionType

 paymentDetails PaymentDetails

}

type UserModifyRequest struct {

 id string

 userType UserType

 email string

 subType subscriptionType

 paymentDetails PaymentDetails

}

type User struct {

 id string

}

type PaymentDetails struct {

 stripeTokenID string

}

type UserManager interface {

 AddUser(ctx context.Context, request UserAddRequest) (User, error)

 ModifyUser(ctx context.Context, request UserModifyRequest) (User, error)

}

At first sight, the rest of the code looks reasonable; I am sure you have seen code such as this before.

Let’s assume we worked with the domain experts and agreed on a definition for the term user as a
way to represent any persons using our app (or who have used our app) no matter their status. The
possible states are lead, lost lead, customer, and churned, but we may discover more in the future.
Given this definition, the AddUser function now doesn’t seem like such a good idea. Our domain
doesn’t have the concept of adding users, and using this phrase with domain experts is likely to
confuse them. We are going to end up with a mapping between a system representation of the domain
and a real-world representation. We are not benefiting from the time we have invested to come up
with a robust ubiquitous language.

If we go back to the brief, we see that someone new to the app is called a lead, and once they select a
subscription, they convert into a customer. Given this, we can make some amendments to our code,
as follows:

type LeadRequest struct {

 email string

}

type Lead struct {

 id string

}

type LeadCreator interface {

 CreateLead(ctx context.Context, request LeadRequest) (Lead, error)

}

type Customer struct {

 leadID string

 userID string

}

func (c *Customer) UserID() string {

 return c.userID

}

func (c *Customer) SetUserID(userID string) {

 c.userID = userID

}

type LeadConvertor interface {

 Convert(ctx context.Context, subSelection SubscriptionType) (Customer, error)

}

func (l Lead) Convert(ctx context.Context, subSelection SubscriptionType) (Customer, error)

{

 //TODO implement me

 panic("implement me")

}

This code is much more reasonable and reflects the real world much better. Now, when we discuss
our system with our experts, we can talk in terms of leads, converting leads, customers, and
subscriptions—all ubiquitous language to our domain.

How do you ensure you capture all ubiquitous language?
There are no shortcuts to building a robust, ubiquitous language; it takes time. Spending lots of time
with domain experts is the best way to ensure you capture all important languages. One way to do
this is to ask whether you can join their meetings and perhaps offer to take the minutes. During the
meeting, you should write down any terms you did not understand and afterward follow up to get a
definition. Ensure you add this to the glossary of terms and share this with the rest of your
colleagues.
A warning on the application of ubiquitous language

It can be tempting to try to apply a ubiquitous language across multiple projects, teams, and even
across an entire company. However, if you do this, you are setting yourself up for failure. Evans
advises that ubiquitous language should only apply to a single bounded context (we talk about the
bounded context in the next section, but for now, you can think of bounded context as our project
team and the system we proposed in the Setting the scene section). The reason for this is that

ubiquitous language works best when it is rigorous. If you try to make a specific word (especially,
loaded terms such as customer or user) apply to all different areas of your business, the term will lose
that rigor, and confusion will reign.

Bounded contexts
We have the beginnings of an outline for our subscription system. We have even described some
ubiquitous language to describe the system. What if someone from a different area of a business came
to discuss customers with us? The first thing we should do is define what a customer means to them
as it may mean something different within their bounded context.

Bounded contexts are all about dividing large models into smaller, easier-to-understand chunks and
being explicit about how they relate to each other.

Another way to think of them is a boundary—when we define a term in one context, it does not need
to mean the same in another (although there are likely similarities). For example, if we were to draw
a diagram for our subscription system, it might look like this:

Figure 2.2 – A domain map of our subscription context and how different objects are related

But after speaking to marketing and understanding their context just a little bit, we might define the
following relationships:

Figure 2.3 – Mapping between marketing and subscription contexts

The lines between campaign and customer in the different bounded contexts represent that, although
the same term is used, the model is different, and we can expect to do some mapping between them.
This is discussed in detail in the following paragraphs.

We have clarified here that both contexts care about campaigns and customers, but how we model it
and talk about it in each context does not need to be the same. This is a simple example, but as
systems evolve and gain complexity, defining boundaries makes more and more sense.

Since several bounded contexts often must communicate as shown in Figure 2.3, we often apply
patterns to ensure our models can maintain integrity. The three main patterns are as follows:

Open Host Service

Published language

Anti-corruption layer

Let’s explore these patterns in more detail.

Open Host Service

An Open Host Service is a means of giving other systems (or sub-systems) access to ours. Evans
leaves it purposefully ambiguous as its implementation depends on your team’s skill sets and other
constraints (for example, if you are working with legacy applications, some of the modern Remote
Procedure Call (RPC) approaches discussed here might not be viable to you). Typically, an Open

Host Service is an RPC. Some choices for RPCs might be to build a RESTful API, implement gRPC,
or perhaps even an XML API!

Here is a visual example of what an Open Host Service might look like:

Figure 2.4 – An Open Host Service

In this diagram, the rectangle represents an exposed piece of our bounded context.

Let’s apply what we have learned about Open Host Service to our example.

For our payments and subscription example, we might expose an endpoint to allow the marketing
team to get various kinds of information about a user within our context, such as this:

package chapter2

import (

 "context"

 "encoding/json"

 "net/http"

 "github.com/gorilla/mux"

)

type UserHandler interface {

 IsUserSubscriptionActive(ctx context.Context, userID string) bool

}

type UserActiveResponse struct {

 IsActive bool

}

func router(u UserHandler) {

 m := mux.NewRouter()

 m.HandleFunc("/user/{userID}/subscription/active", func(writer http.ResponseWriter,

request *http.Request) {

 // check auth, etc

 uID := mux.Vars(request)["userID"]

 if uID == "" {

 writer.WriteHeader(http.StatusBadRequest)

 return

 }

 isActive := u.IsUserSubscriptionActive(request.Context(), uID)

 b, err := json.Marshal(UserActiveResponse{IsActive: isActive})

 if err != nil {

 writer.WriteHeader(http.StatusInternalServerError)

 return

 }

 _, _ = writer.Write(b)

 }).Methods(http.MethodGet)

}

The preceding code block exposes a simple endpoint over HTTP available at
/user/{userID}/subscription/active that could be used by another team to check whether a user
has an active subscription or not.

Published language

A ubiquitous language is our team’s internal formally defined language; a published language is the
opposite. If our team is going to expose some of our systems to other teams via an Open Host
Service, we need to ensure the definition of what we expose to other teams in different bounded
contexts is clear.

If we were to extend our HTTP server mentioned earlier to have a GET /{id}/user endpoint, we
would need to publish language to help other teams understand the output schema. Two popular ways
to present published language are via OpenAPI or gRPC.
OpenAPI
We can use OpenAPI to define the schema. This is a popular approach as you can also generate client
and server code to speed up development for your team and for consumer teams too. You can use a
tool called Swagger for this. The code might look something like this:

swagger: "2.0"

info:

 description: "Public documentation for payment & subscription System"

 version: "1.0.0"

 title: "Payment & Subscription API"

 contact:

 email: "ourteam@subs.com"

host: "api.payments.com"

schemes:

 - "https"

paths:

 /users:

 get:

 summary: "Return details about users"

 operationId: "getUsers"

 produces:

 - "application/json"

 responses:

 "200":

 description: "successful operation"

 schema:

 $ref: "#/definitions/User"

 "400":

 description: "bad request"

 "404":

 description: "users not found"

definitions:

 User:

 type: "object"

 properties:

 id:

 type: "integer"

 format: "int64"

 username:

 type: "string"

 subscriptionStatus:

 type: "boolean"

 subscriptionType:

 type: "string"

 email:

 type: "string"

 ApiResponse:

 type: "object"

 properties:

 code:

 type: "integer"

 format: "int32"

 type:

 type: "string"

 message:

 type: "string"

This code generates the following easy-to-digest UI, which we can share with other teams as our
published language:

Figure 2.5 – The generated API documentation for the OpenAPI specification

If you want to play around and generate your own OpenAPI code from a specification, you can use
the Swagger Editor (https://editor.swagger.io) in your browser.

As well as generating documentation, Swagger also enables you to generate client and server code in
a variety of different languages and frameworks:

Figure 2.6 – Languages supported by Swagger

For Go specifically, I have had a lot of success using oapi-codegen
(https://github.com/deepmap/oapi-codegen). oapi-codegen supports generating Go clients and servers
from OpenAPI specifications such as the one we created previously. It contains plenty of
configuration options and supports multiple server libraries, such as gorilla and chi. Let’s see how
we can use it and step through the generated code. You can find all the code and configuration in the
GitHub repository for this book here: https://github.com/PacktPublishing/Domain-Driven-Design-
with-GoLang/tree/main/chapter2/oapi.

https://editor.swagger.io/
https://github.com/deepmap/oapi-codegen
https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter2/oapi

Firstly, we have created a configuration file. This tells the open-api generator which go package we
would like our generated code to be in and which file to store the generated code in. It looks like this:

package: oapi

output: ./openapi.gen.go

generate:

 models: true

We now need to install the open-api generator. We can do this with the following command:

go install github.com/deepmap/oapi-codegen/cmd/oapi-codegen@latest

After this is installed, we simply need to run the following command from within the chapter2/oapi
folder:

oapi-codegen --config=config.yml ./oapi.yaml

If all goes well, you should see an openapi.gen.go file is created:

Figure 2.7 – openapi.gen.go file

If you see some errors when you open the file, it’s likely because we don’t have all the necessary Go
modules synced to our project. If you run the following, the errors should go away:

 go mod tidy && go mod vendor

You now have an interface for a server that you can implement. Every time you update your API
documentation, you can rerun this command to generate a new server definition.

Generating a Go client is especially easy. All we need to do is add client: true to our config file.
So, config.yml now looks like this:

package: oapi

output: ./openapi.gen.go

generate:

 models: true

 client: true

Our generated code now has a new Client definition:

// The interface specification for the client above.

type ClientInterface interface {

 // GetUsers request

 GetUsers(ctx context.Context, reqEditors ...RequestEditorFn) (*http.Response, error)

}

Again, if we updated our OpenAPI specification and wanted to update the client, all we would need
to do is run the preceding command again. You could set up a job as part of your continuous
integration (CI) pipeline that generates a new client package every time a specification change is
made, allowing consumer teams to get the latest version whenever they need it.

As an exercise, see whether you can implement the OpenAPI server and call it with the generated Go
client. You may find the examples from oapi-gen useful—you can find them here:
https://github.com/deepmap/oapi-codegen/tree/master/examples.

OpenAPI is a great option for your published language if you and your team are already familiar with
REST APIs. OpenAPI is documentation-first, which means your external-facing documentation is
always kept up to date, which is a huge advantage. The code generation means you can support many
different use cases with no extra effort.

The downside to OpenAPI is that there are more performant alternatives out there. Furthermore,
OpenAPI does not give any protection for breaking changes natively. For example, if you removed a
field from your documentation, but another team depended on it, you would likely break their
workflow.

An alternative, modern approach that solves some of these issues and adds some more features is
gRPC.

gRPC
gRPC was created at Google to handle remote communication at scale. It supports load balancing,
tracing, health checks, bi-directional streaming, and authentication. Usually, these are features you
needed to provision other software services or even hardware for in the past.

Furthermore, gRPC uses binary serialization to compress the payload it sends, making it very
efficient and fast. In gRPC, a client application can call a method on a remote server as if it were
local code. gRPC supports a variety of different languages and frameworks, such as OpenAPI.

Here is a visual example of how a gRPC client and server may interact:

https://github.com/deepmap/oapi-codegen/tree/master/examples

Figure 2.8 – gRPC clients in Node and Kotlin connecting to a gRPC server written in Golang

To call a method on a remote server, firstly, we must define our message protobuf. Protobufs are
typically defined in a .proto file, and they are language-agnostic. A basic (incomplete) example
might look like this:

message User {

 int64 id = 1;

 string username = 2;

 string email = 3;

}

From here, we need to define our service. This is effectively our request and response objects:

// The User service definition.

service UserService {

 // Create a User

 rpc CreateUser (CreateUserRequest) returns (CreateUserResponse) {}

}

// The request message contains all the things we need to create a user.

message CreateUserRequest {

 User user = 1;

}

// The response message contains whether we were successful or not

message CreateUserResponse {

 bool success = 1;

}

From here, we can generate client and server code, as described earlier.

At the time of writing, gRPC supports the following natively:

C#

C++

Dart

Golang

Java

Kotlin

Node

Objective-C

PHP

Python

Ruby

. . . but there are community-built generators for other languages.

gRPC is more complicated to start with than OpenAPI, mostly because developers have generally
had more experience with REST-based APIs. Furthermore, some of the tools needed to generate code
can be quite complicated to install and get working. Let’s see what that looks like in Go.

gRPC for Go using buf

We are going to use buf (https://buf.build) to generate our Go client and server as I have found it by
far the most accessible way to interact with protobuf.

First, let’s install some of the underlying protobuf tools we will need with the following commands:

go install google.golang.org/protobuf/cmd/protoc-gen-go@latest

go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest

You also need to update your path with the following command:

export PATH="$PATH:$(go env GOPATH)/bin"

Next, let’s make a file called buf.gen.yml. It looks like this:

version: v1

plugins:

 - name: go

 out: gen/proto/go

 opt: paths=source_relative

 - name: go-grpc

 out: gen/proto/go

 opt:

 - paths=source_relative

 - require_unimplemented_servers=false

You can also find the code for this here: https://github.com/PacktPublishing/Domain-Driven-Design-
with-GoLang/tree/main/chapter2/grpc. The preceding code simply says we want to generate Go from
our protobuf definition. You can add C, Java, and other languages here too.

Let’s now install buf:

brew install bufbuild/buf/buf

https://buf.build/
https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter2/grpc

To verify everything is running correctly, if you run buf lint from chapter2/grpc, you should see the
following output:

user.proto:1:1:Files must have a package defined.

Let’s fix this by adding a package to the top of the file:

syntax = "proto3";

package user.v1;

message User {

 int64 id = 1;

 string username = 2;

 string email = 3;

}

// The User service definition.

service UserService {

 // Create a User

 rpc CreateUser (CreateUserRequest) returns (CreateUserResponse) {}

}

// The request message contains all the things we need to create a user.

message CreateUserRequest {

 User user = 1;

}

// The response message contains whether we were successful or not

message CreateUserResponse {

 bool success = 1;

}

If you rerun the buf lint command, you should now see no output.

Now, we can run the following command to generate our gRPC client and server:

buf generate

We now experience what will be our final error:

protoc-gen-go: unable to determine Go import path for "user/v1/user.proto"

Please specify either:

 • a "go_package" option in the .proto source file, or

 • a "M" argument on the command line.

See https://developers.google.com/protocol-buffers/docs/reference/go-generated#package for

more information.

Failure: plugin go: exit status 1

The protobuf tooling comes with lots of opinions and support to ensure best practices. Let’s add a
package name for our protobuf file, making the final file look like this:

syntax = "proto3";

package user.v1;

option go_package = "example.com/testing/protos/user";

message User {

 int64 id = 1;

 string username = 2;

 string email = 3;

}

// The User service definition.

service UserService {

 // Create a User

 rpc CreateUser (CreateUserRequest) returns (CreateUserResponse) {}

}

// The request message contains all the things we need to create a user.

message CreateUserRequest {

 User user = 1;

}

// The response message contains whether we were successful or not

message CreateUserResponse {

 bool success = 1;

}

If we run buf generate one final time, we will see that a gen folder has been created for us with
importable Go code:

Figure 2.9 – gen folder

As an exercise, see if you can implement the gRPC client and server. The buf docs give guidance on
how you might do that here: https://docs.buf.build/tour/implement-grpc-endpoints.
Which should you choose?

Either! You will have great results with either approach. Due to gRPC’s speed and extra features, it is
becoming more popular. However, OpenAPI can be easier to retrofit to already existing APIs and is
easier to understand.

Anti-corruption layer

Sometimes called an adapter layer, an anti-corruption layer can be used to translate models from
different systems. It is a complementary pattern that works well with the Open Host Service. For
example, the marketing team’s published language may define a campaign as follows:

{

 "id":"4cdd4ba9-7c04-4a3d-ac52-71f37ba75d7f",

 "metadata":{

 "name":"some campaign",

 "category":"growth",

 "endDate":"2023-04-12"

 }

}

https://docs.buf.build/tour/implement-grpc-endpoints

However, our internal model for a campaign might look like this:

type Campaign struct {

 id string

 title string

 goal string

 endDate time.Time

}

As you can see, we care about most of the same information, but we name it differently or have a
slightly different format. We have two options here:

We can swap our campaign model to be exactly the same as the marketing model. This would go against the principles of DDD
and mean we are strongly coupling the domain model to something outside of our control.

We can write an anti-corruption layer.

An anti-corruption later would look like this:

package chapter2

import (

 "errors"

 "time"

)

type Campaign struct {

 ID string

 Title string

 Goal string

 EndDate time.Time

}

type MarketingCampaignModel struct {

 Id string `json:"id"`

 Metadata struct {

 Name string `json:"name"`

 Category string `json:"category"`

 EndDate string `json:"endDate"`

 } `json:"metadata"`

}

func (m *MarketingCampaignModel) ToCampaign() (*Campaign, error) {

 if m.Id == "" {

 return nil, errors.New("campaign ID cannot be empty")

 }

 formattedDate, err := time.Parse("2006-01-02", m.Metadata.EndDate)

 if err != nil {

 return nil, errors.New("endDate was not in a parsable format")

 }

 return &Campaign{

 ID: m.Id,

 Title: m.Metadata.Name,

 Goal: m.Metadata.Category,

 EndDate: formattedDate,

 }, nil

}

In this short snippet, we translated a MarketingCampaignModel into a Campaign in our domain. We
included some checks to ensure the format of the data we receive is acceptable and won’t corrupt our
data model. It’s worth noting that in more complex systems, anti-corruption layers could be entire
services. This can be useful when you intend to migrate from an old system to a new system in

multiple stages. However, it adds another point of latency and failure. The following diagram
provides an example of an anti-corruption layer:

Figure 2.10 – Anti-corruption layer in a distributed system

Of all the DDD patterns, the anti-corruption pattern is the one I use most when working on systems
that do not use DDD. It’s simple but very effective for ensuring we keep systems decoupled.

Summary
In this chapter, we have learned about domains, sub-domains, ubiquitous language, and bounded
contexts. These are all core components of DDD.

We explored some domain-driven Go code for the first time and saw how even minor changes could
improve the readability of our code and make it align more with the domain we are developing
software for.

We also learned about some new patterns—Open Host Service, published language, and anti-
corruption layers. Finally, we explored some tools (OpenAPI and gRPC) we can use to make
publishing language easier.

In the next chapter, Aggregates, Entities, and Value Objects, we will explore more DDD terminology
and learn how these concepts can help make our domain-driven code more robust and scalable.

Further reading
OpenAPI: https://github.com/OAI/OpenAPI-Specification

https://github.com/OAI/OpenAPI-Specification

Swagger: https://swagger.io

gRPC: https://grpc.io

https://swagger.io/
https://grpc.io/

3

Entities, Value Objects, and Aggregates
In the previous chapter, we learned about some of the core concepts of domain-driven design. In this
chapter, we will build upon that foundational knowledge to learn more patterns and concepts, which
will help you on your journey to mastering DDD. We will start by looking at entities and value
objects. This is where we will write most of the business logic for our domain-driven application.

We will finish by looking at aggregates, which are useful when we need to cluster domain objects
together and treat them as a single item.

In this chapter, we will cover the following topics:

What is an entity, and how should I use it?

What are some common pitfalls when designing entities, and how can I avoid them?

What is a value object, and how should I use it?

What is the aggregate pattern, and how should I use it?

How do I discover aggregates?

By the end of this chapter, you will be able to identify some common pitfalls while designing entities
and how we can avoid them. You will also be able to tell what value objects and aggregate patterns
are and to use them.

Let’s start by looking at entities.

Technical requirements
In this chapter, we will write a small amount of Golang code. To be able to run it, you will need the
following:

Golang installation: You can find instructions on how to install it here: https://go.dev/doc/install. The code in this chapter was
written with Go 1.19.3 installed, so anything later than this should be fine.

A text editor or IDE: Some popular options are VSCode (https://code.visualstudio.com/download) and Goland
(https://www.jetbrains.com/help/go/installation-guide.html).

GitHub repository: https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter3.

Working with entit ies

https://go.dev/doc/install
https://code.visualstudio.com/download
https://www.jetbrains.com/help/go/installation-guide.html
https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter3

In domain-driven design, entities are defined by their identity. Their attributes do not define them,
and it is expected that although their attributes may change over time, their identity will not. While
the entity may change so much that it is indistinguishable from where it started, it retains the same
identity, and we treat it as the same object. Let’s look at an example. On ebay.com, you can sign up as
a user. If you choose to sell something, you become a seller. You can also choose to bid on items. A
naïve model of this might look as follows:

Figure 3.1 – A simple domain model for an auction site

Some actions that could take place in our system are as follows:

A user updates their address

A user updates their email address

An auction end time is updated

These actions do not change the identity of our entity. We are still referencing the same ID, but some
attributes may have changed.

http://ebay.com/

An implementation of the auction entity might look as follows:

package chapter3

import (

 "time"

 "github.com/Rhymond/go-money"

)

// Auction is an entity to represent our auction construct.

type Auction struct {

 ID int

 // We use a specific money library as floats are not good ways to represent money.

 startingPrice money.Money

 sellerID int

 createdAt time.Time

 auctionStart time.Time

 auctionEnd time.Time

}

As an exercise, see if you can write entities for bids and users.

In the preceding code sample, we have an int called ID – this is our entity ID. Entity IDs do not
necessarily have to be generated by the system. They may form part of the entity’s attributes. For
example, in most countries, people are issued a unique tax identification number that never changes.
Therefore, it might be a good unique identifier for you to use if it’s relevant to your domain (for
example, if you are building a HR system).

One interesting case is a user’s email address. At a glance, email addresses might seem like good
entity identifiers as we will require them to be unique. However, in most systems, users can change
the email address they will receive notifications on. Therefore, email addresses would be much better
suited to be an attribute of the entity.

Generating good identif iers

Generating good unique identifiers for our entities is surprisingly hard. In the previous example, we
used an int for our ID. For some good use cases, this will be fine as it is simple. However, in a
system of substantial scale, we will quickly run into an issue.

Let’s say we write the following Go code:

fmt.Println(math.MaxInt)

We will get the following output:

9223372036854775807

However, let’s try and add 1 to this:

fmt.Println(math.MaxInt + 1)

We will get the following error:

cannot use math.MaxInt + 1 (untyped int constant 9223372036854775808) as int value in

argument to fmt.Println (overflows)

We just ran out of integers! If we had used this as an identifier, we would now be experiencing a
customer-facing production issue and would need to scramble to rearchitect our system under
pressure effectively.

It is essential to try and future-proof your system as much as possible, especially when it comes to
things such as entity identifiers. If you struggle to develop a good strategy for generating IDs, using
universally unique identifiers (UUIDs) is a good place to start. UUIDs are 128-bit labels, which,
when generated according to the specification, are effectively unique.

While UUIDs are not a part of the Go standard library, Google provides an excellent library for them.
The following is an example of how to use UUIDs in Go:

package chapter3

import "github.com/google/uuid"

type SomeEntity struct {

 id uuid.UUID

}

func NewSomeEntity() *SomeEntity {

 id := uuid.New()

 return &SomeEntity{id: id}

}

If you are using a persistent store such as PostgreSQL, you can lean on it to create a UUID for you.

A warning when defining entit ies

Due to the focus of entities being on their identity, it is very easy to fall into the trap of letting the
database design dictate what your domain model will look like. This can lead to what is known as an
anemic domain model.

Anemic models
Anemic models have little or no domain behavior as part of their design. This means that you are not
getting the full benefit of DDD. In my experience, entities are where anemia shows up most often. It
is quite easy to diagnose anemic models and course-correct them if they’re identified early enough. If
your model has mostly public getter and setter functions, no business logic, or depends on various
clients to implement the business logic, you probably have an anemic model.

Here is what an anemic entity for our auction might look like:

package chapter3

import (

 "time"

 "github.com/Rhymond/go-money"

)

type AnemicAuction struct {

 id int

 startingPrice money.Money

 sellerID int

 createdAt time.Time

 auctionStart time.Time

 auctionEnd time.Time

}

func (a *AnemicAuction) GetID() int {

 return a.id

}

func (a *AnemicAuction) StartingPrice() money.Money {

 return a.startingPrice

}

func (a *AnemicAuction) SetStartingPrice(startingPrice money.Money) {

 a.startingPrice = startingPrice

}

func (a *AnemicAuction) GetSellerID() int {

 return a.sellerID

}

func (a *AnemicAuction) SetSellerID(sellerID int) {

 a.sellerID = sellerID

}

func (a *AnemicAuction) GetCreatedAt() time.Time {

 return a.createdAt

}

func (a *AnemicAuction) SetCreatedAt(createdAt time.Time) {

 a.createdAt = createdAt

}

func (a *AnemicAuction) GetAuctionStart() time.Time {

 return a.auctionStart

}

func (a *AnemicAuction) SetAuctionStart(auctionStart time.Time) {

 a.auctionStart = auctionStart

}

func (a *AnemicAuction) GetAuctionEnd() time.Time {

 return a.auctionEnd

}

func (a *AnemicAuction) SetAuctionEnd(auctionEnd time.Time) {

 a.auctionEnd = auctionEnd

}

Please note that there is nothing necessarily wrong with this, and you will see a lot of Go code that
looks like this. But you simply are not getting the full benefit of the domain-driven design if you do
this. As you can see, any other construct that uses our AnemicAuction will potentially make
assumptions about what some of our attributes are for. Furthermore, they will implement business
logic themselves and may do this in different ways that our domain experts did not intend.

Let’s refactor the code to the following:

package chapter3

import (

 "errors"

 "time"

 "github.com/Rhymond/go-money"

)

type AuctionRefactored struct {

 id int

 startingPrice money.Money

 sellerID int

 createdAt time.Time

 auctionStart time.Time

 auctionEnd time.Time

}

func (a *AuctionRefactored) GetAuctionElapsedDuration() time.Duration {

 return a.auctionStart.Sub(a.auctionEnd)

}

func (a *AuctionRefactored) GetAuctionEndTimeInUTC() time.Time {

 return a.auctionEnd

}

func (a *AuctionRefactored) SetAuctionEnd(auctionEnd time.Time) error {

 if err := a.validateTimeZone(auctionEnd); err != nil {

 return err

 }

 a.auctionEnd = auctionEnd

 return nil

}

func (a *AuctionRefactored) GetAuctionStartTimeInUTC() time.Time {

 return a.auctionStart

}

func (a *AuctionRefactored) SetAuctionStartTimeInUTC(auctionStart time.Time) error {

 if err := a.validateTimeZone(auctionStart); err != nil {

 return err

 }

 // in reality, we would likely persist this to a database

 a.auctionStart = auctionStart

 return nil

}

func (a *AuctionRefactored) GetId() int {

 return a.id

}

func (a *AuctionRefactored) validateTimeZone(t time.Time) error {

 tz, _ := t.Zone()

 if tz != time.UTC.String() {

 return errors.New("time zone must be UTC")

 }

 return nil

}

Even in our simple example, we can see the benefit of our entity having some business logic. We
have guaranteed that time zones are consistent, made it clear to the caller that we only deal with
UTC, and enforced this with errors. We have also given them a consistent definition of the elapsed
duration of our auction, rather than depending on the consumer to define it themselves, which could
potentially lead to drift.

So, why can’t we use the same model for our database? As systems grow in complexity, you might
find the need to store metadata about the auction, such as how many users viewed it, how effective
ads were at pointing to this auction, or a tracing ID so that we can track a user’s journey through the
system. All this information is useful, but it does not belong in the domain model.

A note on object-relational mapping

Object-relational mappings (ORMs) are a popular approach to managing database persistence.
They are not a DDD concept, but they are popular enough that I thought it was worth a brief mention.

For Golang, GORM (https://gorm.io) is a popular library for this. I am not a fan of ORMs – they
lead to a layer of unnecessary abstraction and poor database query design, which is often one of the
biggest reasons applications have performance issues. By using an ORM, you are delegating control
of query creation and planning.

If you want to use an ORM, ensure it does not control how you write your entities in your DDD
context; otherwise, you may end up with an anemic model. We also want to keep the coupling
between our entity and ORM to a minimum. Therefore, I recommend you use an adaptor layer to
decouple your ORM and DDD entity layer. We covered adaptor layers in more detail in the previous
chapter.

Now that we understand entities, let’s look at value objects.

Working with value objects
Value objects are, in some ways, the opposite of entities. With value objects, we want to assert that
two objects are the same given their values. Value objects do not have identities and are often used in
conjunction with entities and aggregates to enable us to build a rich model of our domain. We
typically use them to measure, quantify, or describe something about our domain.

Before we go any further, let’s write some Golang code to help us understand value objects a bit
further.

Firstly, we will define a Point in the following code block:

package chapter3

type Point struct {

 x int

 y int

}

func NewPoint(x, y int) *Point {

 return &Point{

 x: x,

 y: y,

 }

}

We will also write the following test, which checks if two points with the same coordinates are equal:

package chapter3_test

import (

 "testing"

 "ddd-golang/chapter3"

)

func Test_Point(t *testing.T) {

https://gorm.io/

 a := chapter3.NewPoint(1, 1)

 b := chapter3.NewPoint(1, 1)

 if a != b {

 t.Fatal("a and b were not equal")

 }

}

To a human, these two points are, of course, equal. You visit point A or point B on a map; you will
end up in the same place – that is, at coordinates 1,1. However, this test fails:

=== RUN Test_Point

 value_objects_test.go:13: a and b were not equal

--- FAIL: Test_Point (0.00s)

So, why does it fail? In Golang, when we use the & symbol, we create a pointer to a memory address
where points A and B are stored. When we do an equality check, they are not equal, as A and B are
stored in different memory locations.

Now, let’s change our point definition to the following:

type Point struct {

 x int

 y int

}

func NewPoint(x, y int) Point {

 return Point{

 x: x,

 y: y,

 }

}

The test now passes (notice how we are no longer returning a pointer?). This is because the two
points are now being compared on their values when we do an equality check. They are value
objects; we can treat them equally if their values are equal.

Notice how, in the point class, x and y are lowercase? This is to stop them from being exported and
mutated. It is recommended that value objects remain immutable to prevent any unexpected behavior.

Value objects should be replaceable. Imagine we are writing a game and using a point to represent the
player’s current location. We might write some code to move our player, as follows:

package chapter3

type Point struct {

 x int

 y int

}

func NewPoint(x, y int) Point {

 return Point{

 x: x,

 y: y,

 }

}

const (

 directionUnknown = iota

 directionNorth

 directionSouth

 directionEast

 directionWest

)

func TrackPlayer() {

 currLocation := NewPoint(3, 4)

 currLocation = move(currLocation, directionNorth)

}

func move(currLocation Point, direction int) Point {

 switch direction {

 case directionNorth:

 return NewPoint(currLocation.x, currLocation.y+1)

 case directionSouth:

 return NewPoint(currLocation.x, currLocation.y-1)

 case directionEast:

 return NewPoint(currLocation.x+1, currLocation.y)

 case directionWest:

 return NewPoint(currLocation.x-1, currLocation.x)

 default:

 //do a barrel roll

 }

 return currLocation

}

The point here is a description of our player’s location. We can take advantage of the replaceability
of the value object to update the point representing a player’s position to be a completely new value
every time we move. In this specific instance, you’ll also notice that the move function is side effect
free. This is something we should strive toward as part of immutability.

By following the principles of immutability and side-effect-free functions, we have made our value
objects easier to reason about and to write unit tests for. We can write very simple tests with multiple
different inputs with predictable outputs. This will help us with the long-term maintenance of the
system.

How should I decide whether to use an entity or value
object?

We should aim to use value objects as much as possible when modeling our domain. This is because
they are the safest constructs we can use when implemented correctly. We do not have to worry about
consumers incorrectly modifying our instance in a way we did not intend.

If you care only about the values of an object, then it should preferably be a value object. Some other
questions to ask yourself to ensure a value object is the right choice for you are:

Is it possible for me to treat this object as immutable?

Does it measure, quantify, or describe a domain concept?

Can it be compared to other objects of the same type by its values?

If the answers to all these questions are yes, a value object is probably right for your use case.

At this point, it probably feels as if I am advising everything should be a value object. The truth is
that this is not a bad way to think about it. Try and make everything a value object to start with until
it does not fit your use case. At that point, it can be upgraded to an entity.

Now that we have a strong understanding of entities and value objects, we can build upon our
knowledge and learn how to combine them with the aggregate pattern.

The aggregate pattern
Aggregates are probably one of the hardest patterns of domain-driven design and are, therefore, often
implemented incorrectly. This isn’t necessarily bad if it helps you organize your code, but in the
worst case, it may hinder your development speed and cause inconsistencies.

In domain-driven design, the aggregate pattern refers to a group of domain objects that can be treated
as one for some behaviors. Some examples of aggregate patterns are:

An order: Typically, an order consists of individual items, but it is helpful to treat them as a single thing (an order) for some
purposes within our system.

A team: A team consists of many employees. In our system, we would likely have a domain object for employees, but grouping
them and applying behaviors to them as a team would be helpful in situations such as organizing departments.

A wallet: Typically, a wallet (even a virtual one) contains many cards and potential currencies for many countries and maybe even
cryptocurrencies! We may want to track the value of the wallet over time and to do that, we may treat the wallet as an aggregate:

Figure 3.2 – An aggregate of a wallet holding a debit card, a credit card, and cryptocurrencies

Often, aggregates are confused with data structures used for collections of data, such as arrays, maps,
and slices. These are not the same thing. While an aggregate may use these collections, an aggregate
is a DDD concept and, therefore, will usually contain multiple collections, fields, functions, and
methods. Instead, the job of an aggregate pattern is to act as a transaction boundary for the domain
objects within. Loading, saving, editing, and deleting should happen to all objects within the
aggregate or not at all. Let’s look at our examples again:

If an order is canceled, we should return all items within that order to stock. We may also want to trigger a refund.

If a new employee joins a team, we may need to update the line manager structure.

If a user adds a new card to their wallet, we need to ensure its balance is reflected in the total wallet balance.

Let’s look at how we might implement the wallet aggregate we mentioned here:

type WalletItem interface {

 GetBalance() (money.Money, error)

}

type Wallet struct {

 id uuid.UUID

 ownerID uuid.UUID

 walletItems []WalletItem

}

func (w Wallet) GetWalletBalance() (*money.Money, error) {

 var bal *money.Money

 for _, v := range w.walletItems {

 itemBal, err := v.GetBalance()

 if err != nil {

 return nil, errors.New("failed to get balance")

 }

 bal, err = bal.Add(&itemBal)

 if err != nil {

 return nil, errors.New("failed to increment balance")

 }

 }

 return bal, nil

}

Here are some interesting things to call out about this code block – id is our aggregate root and is our
wallet’s identity. OwnerID is the identity of the entity that owns the wallet. We do not always need to
know all the details of an owner, but it gives us the ability to fetch them when necessary. walletItems
is a collection of WalletItem. WalletItem is an entity we defined elsewhere, so for now, we just
define an interface.

Discovering aggregates

One of the hardest tasks of domain-driven design is trying to discover which type of construct to use
and when. Before trying to cluster our domain models into aggregates, we need to find our bounded
context’s invariants. An invariant is simply a rule in our domain that must always be true. For

example, we may say that in our system, for an order to be created, we must have the item in stock.
This is a business invariant. If we do not have an item in stock, we cannot promise it to customers.

For aggregates, we are looking for transactional consistency, not eventual consistency; we want any
changes to our aggregate to be immediate and atomic. Therefore, we can think of an aggregate as a
transactional consistency boundary. Whenever we make changes within our domain, we should
ideally only modify one aggregate per transaction. If it is more, then your model is probably not quite
correct, and you should revisit it.

Designing aggregates

Generally, we should aim for small aggregates. Keeping aggregates small will help make our system
more scalable, improve performance, and give transactions more chance of success. Let’s look at the
order system again and imagine a multi-user scenario (that is, multiple customers are trying to order
the same item from a website at once). We could model our order aggregate as follows:

type item struct {

 name string

}

type Order struct {

 items []item

 taxAmount money.Money

 discount money.Money

 paymentCardID uuid.UUID

 customerID uuid.UUID

 marketingOptIn bool

}

This order struct seems reasonable and in line with what we see in many order flows online today.
However, including marketing opt-in in this aggregate is a bad design for a couple of reasons:

Firstly, from a bounded context perspective, marketing opt-in has nothing to do with the order object.

Secondly, if a user were to opt out of marketing between starting an order and completing it, we would not want the order to not
complete. Therefore, removing it from our aggregate makes sense:

type Order struct {

 items []item

 taxAmount money.Money

 discount money.Money

 paymentCardID uuid.UUID

 customerID uuid.UUID

}

NOTE
This does not mean we cannot include a marketing opt-in checkbox in our UI; it should just be decoupled from our
aggregate and the transactional guarantee we want to achieve.

Aggregates beyond a single bounded context

Especially at the business scale, there will be situations where our bounded context changes and other
sub-systems would like to be notified. Beyond our bounded context, we should expect (and aim for)
eventual consistency. This means we expect the other systems to receive and process our event in a
reasonable amount of time, but we do not expect it to be atomically up-to-date as we would expect
our bounded contexts to be. This leads to more decoupled systems with stronger resilience and
scalability possibilities. Check with the domain experts to see if eventual consistency is an acceptable
trade-off to make room for these benefits. We will cover more about publishing domain events and
microservices in Part 2 of this book.

Summary
In this chapter, we learned about entities, value objects, and aggregates. We saw why they can be
challenging to reason about and why they are probably the most important building blocks of
domain-driven design.

By now, we understand the difference between value objects and entities and why value objects are
much safer to use generally. Furthermore, we have learned how to use aggregates to ensure
transaction boundaries, which is important in any system!

In the next chapter, Chapter 4, Factories, Repositories, and Services, we will cover the final core
concepts of domain-driven design before we build some more complex applications together in Part
2!

Further reading
Take a look at the following resources to learn more about the topics that were covered in this
chapter:

What is a UUID?: https://www.techtarget.com/searchapparchitecture/definition/UUID-Universal-Unique-Identifier

What is Object-Relational Mapping?: https://www.techopedia.com/definition/24200/object-relational-mapping--orm

https://www.techtarget.com/searchapparchitecture/definition/UUID-Universal-Unique-Identifier
https://www.techopedia.com/definition/24200/object-relational-mapping--orm

4

Exploring Factories, Repositories, and Services
Factories, repositories, and services are the last major building blocks of domain-driven design
(DDD) that we will learn about before bringing everything together in Part 2 of this book, where we
will build some services from scratch.

None of the factories, repositories or services are unique to DDD and are often used in projects not
using the DDD approach. This makes them especially important and useful to learn about, as you will
see them everywhere.

In this chapter, we will cover the following topics:

The factory pattern – we will discuss what it is and when it is useful

The repository pattern – we will walk through some examples to help you understand how they differ from database tables

Services – we will look at domain services, application services, and infrastructure services and the difference between them all

By the end of this chapter, you will be able to understand factories, repositories, and services in the
context of DDD as we explore these topics with the help of examples.

Technical requirements
In this chapter, we will write a small amount of Golang code. To be able to run it, you will need the
following:

Golang: You can find instructions to install it here: https://go.dev/doc/install. The following code was written with Go 1.19.3
installed, so anything later than this should be fine.

Text editor or IDE: Some popular options are Visual Studio Code (https://code.visualstudio.com/download) or GoLand
(https://www.jetbrains.com/help/go/installation-guide.html).

GitHub repository: https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter4.

Introducing the factory pattern
The factory pattern is typically used in object-oriented programming and is defined as an object with
the primary responsibility of creating other objects. An example from PHP might look like the
following:

class Factory

{

 public static function build($carType)

https://go.dev/doc/install
https://code.visualstudio.com/download
https://www.jetbrains.com/help/go/installation-guide.html
https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter4

 {

 if ($carType == "tesla") {

 return new Tesla();

 }

 if ($carType == "bmw") {

 return new BMW();

 }

 }

}

$myCar = Factory::build("tesla");

The factory class has a static method that accepts carType and returns a new instance. This is a very
simple example, but we could also extend it to set sensible default properties on our car object.
Typically, factory classes should have no other purpose than object creation.

While Golang is not an object-oriented language, the factory pattern is still useful. Here is the same
example we discussed earlier, but this time in Golang:

package chapter4

import (

 "errors"

 "log"

)

type Car interface {

 BeepBeep()

}

type BMW struct {

 heatedSeatSubscriptionEnabled bool

}

func (B BMW) BeepBeep() {

 //TODO implement me

 panic("implement me")

}

type Tesla struct {

 autoPilotEnabled bool

}

func (t Tesla) BeepBeep() {

 //TODO implement me

 panic("implement me")

}

func BuildCar(carType string) (Car, error) {

 switch carType {

 case "bmw":

 return BMW{heatedSeatSubscriptionEnabled: true}, nil

 case "tesla":

 return Tesla{autoPilotEnabled: true}, nil

 default:

 return nil, errors.New("unknown car type")

 }

}

func main() {

 myCar, err := BuildCar("tesla")

 if err != nil {

 log.Fatal(err)

 }

 // do something with myCar

}

In this example, we have created a very simple function that initializes some fields for us, making it
very easy for the caller of BuildCar to use. We also have returned error if the car type is not valid.

Factories are a great way to standardize the creation of complex structs and can be useful as your
application grows in complexity. Factories also provide encapsulation (that is, hiding the internal
details of an object from the caller and only exposing the minimal interface they need). Finally,
factories can help ensure business invariants are enforced at the time of object creation, which can
dramatically simplify our domain model.

For example, if we were creating a booking system for a hair salon, and someone tried to create a
booking outside of business hours, we might enforce this in our CreateBooking factory function as
follows:

package chapter4

import (

 "errors"

 "time"

 "github.com/google/uuid"

)

type Booking struct {

 id uuid.UUID

 from time.Time

 to time.Time

 hairDresserID uuid.UUID

}

func CreateBooking(from, to time.Time, hairDresserID uuid.UUID) (*Booking, error) {

 closingTime, _ := time.Parse(time.Kitchen, "17:00pm")

 if from.After(closingTime) {

 return nil, errors.New("no appointments after closing time")

 }

 return &Booking{

 hairDresserID: uuid.New(),

 id: uuid.New(),

 from: from,

 to: to,

 }, nil

}

The preceding example shows a factory function creating an entity. I have chosen to let the factory
generate the ID. Let’s explore entity factories a little bit more.

Entity factories

As we discussed in the previous chapter, entities have identities and they have a minimum set of
requirements necessary to instantiate them. We should, therefore, ensure we create entities that satisfy
this minimum set of requirements when we create them via a factory. If we want to set other
properties, we can then provide other functions.

When designing an entity factory function, we need to decide whether we want the factory function
to be responsible for generating the identity for our struct or whether we want to pass one as a
parameter. Both ways are fine, but I tend to lean toward letting the factory function generate it unless
you have a good reason not to.

Now we understand entity factories, let’s look at repositories.

Implementing the repository pattern in Golang
Repositories are the parts of our code that contain the logic necessary to access data sources. A data
source can be a wide variety of things, such as a file on disk, a spreadsheet, or an AWS S3 bucket, but
in most projects, it is a database.

By using a repository layer, you can centralize common data access code and make your system more
maintainable by decoupling from a specific database technology. For example, your company may
have a desire to move from one cloud provider to another, and the database options are slightly
different; perhaps one has a MySQL offering, and the other offers only the NoSQL databases. In this
instance, we know we only need to rearchitect a small portion of our system (the repository layer) to
be able to enable this change.

Some developers query the database using other channels (such as Command and Query
Responsibility Segregation (CQRS), which we will discuss in Part 2). This can work, since queries
should not change the state of the database, but if you are just starting, ensuring that all interactions
with the database happen in the repository layer is recommended.

One mistake we often make with repository layers is to make one struct per database table. This
should be avoided; instead, aim to make one struct per aggregate. The following diagram should help
outline this:

Figure 4.1 – How to think about repository layers and how other layers interact with them

Figure 4.1 shows a clear distinction between our database tables and our repository layer; a
repository layer can write to multiple tables. Furthermore, our domain layer is decoupled from our
repository layer. When we use DDD, we should always strive to build a system that looks like the one
shown in Figure 4.1.

Let’s continue with the booking system example from the previous section. We want to save our hair
booking appointment to a database. We might define our interface as follows:

type BookingRepository interface {

 SaveBooking(ctx context.Context, booking Booking) error

 DeleteBooking(ctx context.Context, booking Booking) error

}

We define this interface in the same package as our Booking factory and our service layer (there will
be more about services in the next section).

An implementation of a simple repository layer for a Postgres database might look like this:

type PostgresRepository struct {

 connPool *pgx.Conn

}

func NewPostgresRepository(ctx context.Context, dbConnString string) (*PostgresRepository,

error) {

 conn, err := pgx.Connect(ctx, dbConnString)

 if err != nil {

 return nil, fmt.Errorf("failed to connect to db: %w", err)

 }

 defer conn.Close(ctx)

 return &PostgresRepository{connPool: conn}, nil

}

func (p PostgresRepository) SaveBooking(ctx context.Context, booking Booking) error {

 _, err := p.connPool.Exec(

 ctx,

 "INSERT into bookings (id, from, to, hair_dresser_id) VALUES ($1,$2,$3,$4)",

 booking.id.String(),

 booking.from.String(),

 booking.to.String(),

 booking.hairDresserID.String(),

)

 if err != nil {

 return fmt.Errorf("failed to SaveBooking: %w", err)

 }

 return nil

}

func (p PostgresRepository) DeleteBooking(ctx context.Context, booking Booking) error {

 _, err := p.connPool.Exec(

 ctx,

 "DELETE from bookings WHERE id = $1",

 booking.id,

)

 if err != nil {

 return fmt.Errorf("failed to DeleteBooking: %w", err)

 }

 return nil

}

As you can see, the interaction with the database is very simple, and there is no domain logic here;
we would expect that to happen in the application service layer. Next, let’s look at services and
application services.

Understanding services
In DDD, we use a few different types of services to help us organize our code. These are application
services, domain services, and infrastructure services. In this section, we will discuss all three
services and when they are useful, starting with the domain service.

Domain services

Domain services are stateless operations within a domain that complete a certain activity.
Sometimes, we will come across processes we cannot find a good way to model in an entity or value
object; in these cases, it’s a good idea to use a domain service.

It is particularly tricky to outline rules to use domain services; however, some things that you should
look out for are the following:

The code you are about to write performs a significant piece of business logic within one domain

You are transforming one domain object into another

You are taking the properties of two or more domain objects to calculate a value

Services should always be expressed using ubiquitous language from within the bounded context,
just like everything else we do in DDD.

Let’s look at a couple of examples of where a service can be helpful. Imagine we have the following
pieces of code within our entities:

package chapter4

type Product struct {

 ID int

 InStock bool

 InSomeonesCart bool

}

func (p *Product) CanBeBought() bool {

 return p.InStock && !p.InSomeonesCart

}

type ShoppingCart struct {

 ID int

 Products []Product

 IsFull bool

 MaxCartSize int

}

func (s *ShoppingCart) AddToCart(p Product) bool {

 if s.IsFull {

 return false

 }

 if p.CanBeBought() {

 s.Products = append(s.Products, p)

 return true

 }

 if s.MaxCartSize == len(s.Products) {

 s.IsFull = true

 }

 return true

}

The code looks reasonable at first, but it is problematic. While implementing ShoppingCart, we
referenced another entity and added business logic, which does not really belong to ShoppingCart. To
avoid this issue, we move the logic to a domain service, as follows:

package chapter4

import "errors"

type CheckoutService struct {

 shoppingCart *ShoppingCart

}

func NewCheckoutService(shoppingCart *ShoppingCart) *CheckoutService {

 return &CheckoutService{shoppingCart: shoppingCart}

}

func (c CheckoutService) AddProductToBasket(p *Product) error {

 if c.shoppingCart.IsFull {

 return errors.New("cannot add to cart, its full")

 }

 if p.CanBeBought() {

 c.shoppingCart.Products = append(c.shoppingCart.Products, *p)

 return nil

 }

 if c.shoppingCart.MaxCartSize == len(c.shoppingCart.Products) {

 c.shoppingCart.IsFull = true

 }

 return nil

}

We now have a central place to house domain logic that spans two entities. This will become even
more useful as we add more logic to CheckoutService that may use more entities (perhaps a discount
entity or a shipping entity). Having this logic in a single-domain service means that if other clients
want to implement our behavior, they can use our service, and our business invariants will be
automatically enforced.

Domain services are perfect for when we need to compose domain logic in a stateless manner.
However, if this doesn’t fit our use case, we likely need an application service.

Application services

Application services are used to compose other services and repositories. They are responsible for
managing transactional guarantees in place among various models. They should not contain domain
logic (this belongs in the domain service, as discussed in the previous section).

Application services are usually very thin. They are used only for coordination, and all the other logic
should be pushed down into the layers underneath the application layer. Typically, we also address
security concerns in this layer.

An example in our booking context might look as follows:

package chapter4

import (

 "context"

 "errors"

 "fmt"

 "github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/chapter2"

)

type accountKey = int

const accountCtxKey = accountKey(1)

type BookingDomainService interface {

 CreateBooking(ctx context.Context, booking Booking) error

}

type BookingAppService struct {

 bookingRepo BookingRepository

 bookingDomainService BookingDomainService

}

func NewBookingAppService(bookingRepo BookingRepository, bookingDomainService

BookingDomainService) *BookingAppService {

 return &BookingAppService{bookingRepo: bookingRepo, bookingDomainService:

bookingDomainService}

}

func (b *BookingAppService) CreateBooking(ctx context.Context, booking Booking) error {

 u, ok := ctx.Value(accountCtxKey).(*chapter2.Customer)

 if !ok {

 return errors.New("invalid customer")

 }

 if u.UserID() != booking.userID.String() {

 return errors.New("cannot create booking for other users")

 }

 if err := b.bookingDomainService.CreateBooking(ctx, booking); err != nil {

 return fmt.Errorf("could not create booking: %w", err)

 }

 if err := b.bookingRepo.SaveBooking(ctx, booking); err != nil {

 return fmt.Errorf("could not save booking: %w", err)

 }

 return nil

}

As you can see, we do some basic authorization checks and then compose our domain layer with our
repository layer. In this specific instance, it would have been fine for our domain service to do the
persistence too (since we do not cross any domain boundaries). By the end of this code block, we will
have created and saved a new booking.

One other use case for application services is to power a user interface (UI). UIs may need to
compose many different domain services, as demonstrated by the following flowchart. An application
service can help us achieve this too.

Figure 4.2 – A UI making use of application service

Figure 4.2 shows how a UI might use an application service to compose multiple different domain
services to show a single screen to a user, with all the information.

Most modern web applications do the following:

Accept payment (perhaps using Stripe or PayPal)

Send email (perhaps using Amazon SES or Mailchimp)

Track user behavior (perhaps using Mixpanel or Google Analytics)

None of these functions are part of our primary domain, but we still want to include them in our
application. To do this, we can use an infrastructure service. This can then be added to your
application service or domain service.

An implementation of an email infrastructure service might look as follows:

package chapter4

import (

 "bytes"

 "context"

 "encoding/json"

 "fmt"

 "net/http"

)

type EmailSender interface {

 SendEmail(ctx context.Context, to string, title string, body string) error

}

const emailURL = "https://mandrillapp.com/api/1.0/messages/send\""

type MailChimp struct {

 apiKey string

 from string

 httpClient http.Client

}

type MailChimpReqBody struct {

 Key string `json:"key"`

 Message struct {

 FromEmail string `json:"from_email"`

 Subject string `json:"subject"`

 Text string `json:"text"`

 To []struct {

 Email string `json:"email"`

 Type string `json:"type"`

 } `json:"to"`

 } `json:"message"`

}

func NewMailChimp(apiKey string, from string, httpClient http.Client) *MailChimp {

 return &MailChimp{apiKey: apiKey, from: from, httpClient: httpClient}

}

func (m MailChimp) SendEmail(ctx context.Context, to string, title string, body string)

error {

 bod := MailChimpReqBody{

 Key: m.apiKey,

 Message: struct {

 FromEmail string `json:"from_email"`

 Subject string `json:"subject"`

 Text string `json:"text"`

 To []struct {

 Email string `json:"email"`

 Type string `json:"type"`

 } `json:"to"`

 }{

 FromEmail: m.from,

 Subject: title,

 Text: body,

 To: []struct {

 Email string `json:"email"`

 Type string `json:"type"`

 }{{Email: to, Type: "to"}},

 },

 }

 b, err := json.Marshal(bod)

 if err != nil {

 return fmt.Errorf("failed to marshall body: %w", err)

 }

 req, err := http.NewRequest(http.MethodPost, emailURL, bytes.NewReader(b))

 if err != nil {

 return fmt.Errorf("failed to create request: %w", err)

 }

 if _, err := m.httpClient.Do(req); err != nil {

 return fmt.Errorf("failed to send email: %w", err)

 }

 return nil

}

We could then add it to our application service:

type BookingAppService struct {

 bookingRepo BookingRepository

 bookingDomainService BookingDomainService

 emailService EmailSender

}

…

Then, we could define a CreateBooking function as follows:

func (b *BookingAppService) CreateBooking(ctx context.Context, booking Booking) error {

 u, ok := ctx.Value(accountCtxKey).(*chapter2.Customer)

 if !ok {

 return errors.New("invalid customer")

 }

 if u.UserID() != booking.userID.String() {

 return errors.New("cannot create booking for other users")

 }

 if err := b.bookingDomainService.CreateBooking(ctx, booking); err != nil {

 return fmt.Errorf("could not create booking: %w", err)

 }

 if err := b.bookingRepo.SaveBooking(ctx, booking); err != nil {

 return fmt.Errorf("could not save booking: %w", err)

 }

 err := b.emailService.SendEmail(ctx, ...)

 if err != nil {

 // handle it.

}

 return nil

}

…

As you can see, by the end of this code block, we have done the following:

Created a booking

Saved it to our database

Sent an email to our customers to notify them about it

Summary
In this chapter, we learned about three different service types – application, domain, and
infrastructure – and we saw some examples of what they might look like. We also learned about
repository layers and their benefits. Finally, we looked at how we can use factories to simplify object
creation as our application gets more complex.

This wraps up Part 1 of this book. By now, you should have a preliminary understanding of all the
concepts you need to implement a service using DDD. In Part 2 of this book, we will put our new

knowledge to good use as we build an entire service from scratch, using everything we have learned
so far and a couple of new topics wherever relevant.

Part 2: Real -World Domain-Driven Design with Golang
In the second part of this book, we are going to learn how to apply DDD in a more real world setting
and we are going to write a lot of Go code.

We will firstly look how we could apply DDD to both an existing and a new monolithic application.
We will then move on to explore how we could build a microservice from scratch using DDD, whilst
still ensuring we follow good resilience practices.

Finally, we will investigate how DDD can play a part in ensuring a large distributed system is
organized and easy to reason about.

As a bonus, you can also enjoy a chapter on how we might use test-driven development and
behavior-driven development alongside DDD.

This part comprises of the following chapters:

Chapter 5, Applying DDD to a Monolithic Application

Chapter 6, Building a Microservice Using DDD

Chapter 7, DDD for Distributed Systems

Chapter 8, TDD, BDD, and DDD

5

Applying Domain-Driven Design to a Monolithic
Application
In the first part of this book, we learned about the theory behind domain-driven design (DDD) and
looked at isolated examples of how we might implement each idea or pattern. In Part 2 of this book,
we are going to build real-world applications together that will help cement the ideas and give you
example projects to reference in the future.

We will start by building a domain-driven monolithic application (after defining what a monolithic
application is) from scratch. We will then discuss how you might apply DDD principles to an existing
application that was not created using DDD from the beginning.

By the end of the chapter, you will be able to understand the following topics:

What a monolithic application is, as well as in what situation you may want to build one

How to build an entire domain-driven monolith from scratch

How to identify that your existing application might benefit from applying domain-driven design

We’ll get started by looking at what we mean by a monolithic application. But before that, let’s go
through the technical requirements of the chapter.

Technical requirements
In this chapter, we will write a large amount of Golang code. To be able to follow along, you will
need the following:

Golang: You can find instructions to install it at https://go.dev/doc/install. The code in this chapter was written with Go 1.19.3
installed, so anything later than this should be fine.

A text editor or IDE: Some popular options are VS Code (https://code.visualstudio.com/download) or GoLand
(https://www.jetbrains.com/help/go/installation-guide.html). All screenshots in this section are taken from GoLand.

GitHub repository: All code for this section can be found here: https://github.com/PacktPublishing/Domain-Driven-Design-with-
GoLang/tree/main/chapter5.

Docker: We will use this to run a database on our machine. You can find instructions on how to install Docker here:
https://docs.docker.com/compose/install.

A FRIENDLY WARNING
The application we are going to create in this chapter is intended for demonstration only and to really highlight how to work
in the domain-driven design style. It is not production ready, and we will be skipping lots of best practices, such as testing

https://go.dev/doc/install
https://code.visualstudio.com/download
https://www.jetbrains.com/help/go/installation-guide.html
https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter5
https://docs.docker.com/compose/install

and documentation. These are critically important but beyond the scope of this book.However, please see Chapter 8 (P-
Italics) for some insight on how testing and DDD can be complimentary

What do we mean when we say monolithic application?
A monolithic application, or monolith, is likely a term you have heard before, as it is probably the
most popular pattern for developing an enterprise application. We call it a monolithic application if
all the different components of the system are encapsulated into a single unit – for example, if the
user interface, several domains, and infrastructure services are combined into a single deployable
unit. The following figure illustrates this:

Figure 5.1 – Multiple services packed into a single application

Monolithic applications remain popular because of the following reasons:

They are simple to develop. All code and concerns exist in a single place, and you do not need to worry as much about the failures
that can come with remote procedure calls in distributed systems (more on this in the next chapter).

They are simple to deploy. There is only one deployable, and its requirements should be well understood.

They are simple to scale (to a point). Need more power? Simply deploy more versions of the application behind a load balancer.

However, there are also some major downsides. These downsides tend to appear as the application
grows in complexity and/or scale:

The startup time for the application can become multiple minutes. This quickly adds up to many hours wasted by engineers during
development.

Scaling the application starts to become difficult. In addition to the slow startup time, which can impact customers, monoliths can
only typically scale in one dimension. And since the application covers so many different use cases, a lot of time can be spent
optimizing configuration to cover all these use cases. This can lead to monoliths becoming very expensive on a resource front (for
example, CPUs).

Continuous deployment becomes slow. Even if you make a small code change to a specific part, you must deploy the entire
application. This gets slower and slower as the application grows in complexity. Deployments taking longer than an hour are not
unheard of.

A long-term commitment to a specific technology stack is necessary. If your monolithic application is written in PHP, you must
continue to use PHP, even if new application requirements would be better suited for new technology, or if you hire an expert in a

different language – you have to stick with PHP. Moving to a new language would require a rewrite of the entire system (or parts
of it if you decide to move to microservices. We will discuss microservices more in the next chapter).

Changes become difficult to make. With the pressure of delivery and the barrier to beginning development getting higher,
oftentimes, the modularity of the system can become blurred. This is where DDD can help!

In the next section, we will build a simple monolithic application using domain-driven design
principles. Let’s start by outlining the business for which we will build a system.

Setting the scene
In this section, we will outline a scenario using a fictitious company. Domain-driven design is all
about solving business invariants in a specific context, and I hope this example will help reinforce
that.

CoffeeCo is a national coffee shop chain. They experienced rapid growth in the last year and have
opened 50 new stores. Each store sells coffee and coffee-related accessories, as well as store-specific
drinks. Stores often have individual offers, but national marketing campaigns are often run, which
influence the price of an item too.

CoffeeCo recently launched a loyalty program called CoffeeBux, which allows customers to get 1 free
drink for every 10 they purchase. It doesn’t matter which store they purchase a drink at or which they
redeem it at.

CoffeeCo has been thinking of launching an online store. They are also considering a monthly
subscription that allows purchasers to get unlimited coffee every month, as well as a discount on
other drinks. Now that we understand the business domain, we can start to explore how we can build
systems to help CoffeeCo achieve its goals!

We had a domain modeling session with the domain experts, which included employees at the coffee
shop, people from the head office, and suppliers. In this session, we have identified the following
ubiquitous language and definitions that we should keep in mind as we develop our system:

Coffee lovers: What CoffeeCo calls its customers.

CoffeeBux: This is the name of their loyalty program. Coffee lovers earn one CoffeeBux for each drink or accessory they
purchase.

Tiny, medium, and massive: The sizes of the drinks are in ascending order. Some drinks are only available in one size, others in
all three. Everything on the menu fits into these categories.

During the domain modeling session, we identified the following domains:

Store

Products

Loyalty

Subscription

We will revisit each of these as we build our system.

We spoke about what would be a good minimum viable product (MVP) for the new system that we
will create. The domain experts felt that the following features need to be in scope:

Purchasing a drink or accessory using CoffeeBux

Purchasing a drink or accessory with a debit/credit card

Purchasing a drink or accessory with cash

Earning CoffeeBux on purchases

Store-specific (but not national) discounts

We can assume all purchases are in USD for now; in the future, we need to support many currencies though

Drinks only need to come in one size for now

Getting started with our CoffeeCo system
Now that we understand what our business does, let’s begin to build a domain-driven system to
satisfy all the requirements.

Let’s start by initializing a new Golang project:

1. We will create a new project called coffeeco in our Dev folder using GoLand; you can use whichever IDE you like:

Figure 5.2 – Project creation screen in GoLand

2. Next, we will create an internal folder with a loyalty folder inside, as follows:

Figure 5.3 – Our project structure so far

The internal folder is a special folder in Golang. Anything within the internal directory cannot be
imported by other projects. This is a great fit for DDD as we do not want our domain code to be part
of our public API. To automatically enforce this, we will be putting all our domain code inside this
internal folder.

3. Before we can write any code about the loyalty scheme, we need to define a few other structs. We know from the brief that the
loyalty scheme is called CoffeeBux and that they can be collected at any store where a coffee lover purchases a drink. Therefore,
let’s start by defining a coffee lover.

A coffee lover is most certainly an entity. This is because we want a coffee lover to be defined by
their identity; whenever we are talking about a coffee lover and adding CoffeeBux to their loyalty
account, there should be no doubt as to which coffee lover we are applying these.

Let’s create the coffeelover.go file inside the internal folder as follows:

Figure 5.4 – The coffeelover.go folder

This will make it accessible to our entire domain code.

4. Inside coffeelover.go, we can add the following:

package coffeeco

import "github.com/google/uuid"

type CoffeeLover struct {

 ID uuid.UUID

 FirstName string

 LastName string

 EmailAddress string

}

You’ll notice that we have added some entity attributes (FirstName, LastName, and EmailAddress).
This was after consulting the domain experts and understanding what information we need to store
about coffee lovers. Domain-driven design is about constant communication with your stakeholders
and it’s essential you do this.

5. Next, let’s add our store domain, as shown in the following figure:

Figure 5.5 – Adding a store domain

6. We create store/store.go in our internal folder and add the following code:

package store

import "github.com/google/uuid"

type Store struct {

 ID uuid.UUID

 Location string

}

Notice we have decided to make the store an entity again. Again, this is due to the fact that when we
reference a store, it’s really important that we can easily identify which one we are talking about.

This is a good start but a lot is missing that we have not defined yet. Each store sells coffee and
coffee-related accessories, as well as store-specific drinks. We therefore need to define a product.

Defining products is our first real challenge. Should it be an entity or a value object? I think it could
be either. Let’s go back to our questions from Chapter 3:

Is it possible for me to treat this object as immutable?

Does it measure, quantify, or describe a domain concept?

Can it be compared to other objects of the same type just by its values?

We can answer yes to all of these questions. Furthermore, as we mentioned in Chapter 3, it is better
to treat something as a value object and then upgrade it to an entity later, as it’s a safer construct to
deal with. Therefore, for now, we will treat the product as a value object. Let’s go ahead and
implement it:

1. We create the product.go file:

Figure 5.6 – The product.go folder

2. Add the following code:

package coffeeco

import "github.com/Rhymond/go-money"

type Product struct {

 ItemName string

 BasePrice money.Money

}

We added the base price after consulting our domain experts. This is the language they use to refer to
the non-offer price of a product. We should add this to our ubiquitous language definitions.

3. We can now go back to store.go and add our products:

package store

import (

 "github.com/google/uuid"

 coffeeco "coffeeco/internal"

)

type Store struct {

 ID uuid.UUID

 Location string

 ProductsForSale []coffeeco.Product

}

store.go looks pretty good. We now need to think of how we would like to model a purchase. This
would be another situation we would speak to our domain experts about to understand the language
they use to describe a customer buying coffee and whether there is anything surprising that we need
to account for.

4. After a discussion, we create purchase.go:

Figure 5.7 – Creating purchase.go

5. Then, write the following code:

package purchase

import (

 "github.com/Rhymond/go-money"

 "github.com/google/uuid"

 coffeeco "coffeeco/internal"

 "coffeeco/internal/store"

)

type Purchase struct {

 id uuid.UUID

 Store store.Store

 ProductsToPurchase []coffeeco.Product

 total money.Money

 PaymentMeans payment.Means

 timeOfPurchase time.Time

}

Our Purchase type has its own ID and should be an entity; this makes sense. If a customer ever wants
a refund on an item, we will need to be able to reference a specific transaction.

6. There is a little bit more we need to think about for a purchase. Did the customer use card or cash? If they used a card, which was
it? We need to represent this behavior.

We, therefore, need to make a payment domain. Let’s create payment/means.go:

Figure 5.8 – Our project structure so far

7. And add the following code:

package payment

type Means string

const (

 MEANS_CARD = "card"

 MEANS_CASH = "cash"

 MEANS_COFFEEBUX = "coffeebux"

)

type CardDetails struct {

 cardToken string

}

We have used a type alias here to represent payment means. We have also created a struct to
represent CardDetails. This is not how card payments work, but in our simple example, we will
assume we receive a token representing a card at the time of purchase, and that is what we will
charge.

We have made some constants here to define cash and CoffeeBux payments too. This is a little pre-
emptive, but we know we will need them shortly, so I see no harm.

8. Finally, we can go back and add the new PaymentMeans to Purchase:

type Purchase struct {

 id uuid.UUID

 Store store.Store

 ProductsToPurchase []coffeeco.Product

 total money.Money

 PaymentMeans payment.Means

 timeOfPurchase time.Time

 CardToken *string

}

9. We are nearly ready to add some service logic. However, first, let’s define our loyalty scheme.

Let’s make loyalty/coffeebux.go:

Figure 5.9 – Our project structure so far

10. coffeebux.go is going to contain the logic for the loyalty scheme. Let’s add the following code:

package loyalty

import (

 "github.com/google/uuid"

 coffeeco "coffeeco/internal"

 "coffeeco/internal/store"

)

type CoffeeBux struct {

 ID uuid.UUID

 store store.Store

 coffeeLover coffeeco.CoffeeLover

 FreeDrinksAvailable int

 RemainingDrinkPurchasesUntilFreeDrink int

}

We reference a lot of other entities here. It really highlights why companies like having loyalty
schemes; look at how much data we can gather!

We finally have all our domain models defined and we are ready to take our first pass at creating a
service. A purchase is a good fit for service because of the following:

We are about to perform a significant piece of business logic within our domain

We need to calculate some values

We need to interact with the repository layer

To program as defensively as possible, we are going to define a validateAndEnrich function in
product.go. This will help us keep our service as thin as possible. Remember, we should always be
trying to push down as much logic as possible into our domain objects:

1. Let’s add the following code to product.go:

func (p *Purchase) validateAndEnrich() error {

 if len(p.ProductsToPurchase) == 0 {

 return errors.New("purchase must consist of at least one product")

 }

 p.total = *money.New(0, "USD")

 for _, v := range p.ProductsToPurchase {

 newTotal, _ := p.total.Add(&v.BasePrice)

 p.total = *newTotal

 }

 if p.total.IsZero() {

 return errors.New("likely mistake; purchase should never be 0. Please validate")

 }

 p.id = uuid.New()

 p.timeOfPurchase = time.Now()

 return nil

}

In this code block, notice the following:

Purchase is a pointer. That is because our function updates values that are missing.

We initialize a total of 0 USD. We’d need to update this in the future to support more currencies.

2. Also, in purchase.go, let’s add the following:

type CardChargeService interface {

 ChargeCard(ctx context.Context, amount money.Money, cardToken string) error

}

type Service struct {

 cardService CardChargeService

 purchaseRepo Repository

}

func (s Service) CompletePurchase(ctx context.Context, purchase *Purchase) error {

 if err := purchase.validateAndEnrich(); err != nil {

 return err

 }

 switch purchase.PaymentMeans {

 case payment.MEANS_CARD:

if err := s.cardService.ChargeCard(ctx, purchase.total, *purchase.cardToken); err != nil

{

 return errors.New("card charge failed, cancelling purchase")

 }

 case payment.MEANS_CASH:

 // TODO: For the reader to add :)

 default:

 return errors.New("unknown payment type")

 }

 if err := s.purchaseRepo.Store(ctx, *purchase); err != nil {

 return errors.New("failed to store purchase")

 }

 return nil

}

The service is small. We call our validateAndEnrich function to mutate the purchase object for us to
add some necessary values. We could also have made Purchase both a value object and an entity,
which would have meant we did not need to mutate.

3. After calling purchase.validateAndEnrich(), we have some logic depending on the payment means. If it’s a card, we

call CardService to create the purchase. We don’t have CardService defined yet, so for now, we are creating an interface.

Let’s imagine that your team has split into two halves. One half is working on payments, and the
other on implementing purchases. We could meet with the payment team and agree on a contract for
what CardService will look like (in Go, we call these contracts interfaces), and then we can continue
with our implementations at separate paces. This is a really powerful pattern so use it often when
working with other teams!

Finally, if all goes well, we call PurchaseRepo to store our new purchase.

We define repository.go inside the purchase package:

Figure 5.10 – repository.go added to the purchase folder

And for now, it’s just an interface:

package purchase

import "context"

type Repository interface {

 Store(ctx context.Context, purchase Purchase) error

}

Again, defining this as an interface is a good idea. As a team, we can now have a discussion about
which database might be the best for this project and it has not slowed down development. We could
satisfy this interface with any number of different databases.

We now have a basic outline of what our service will look like. We need to add an infrastructure
service for payment and implementation of our repository layer. Let’s do both now.

Implementing our product repository

After a discussion with the team, we have opted to use Mongo, a document database. The reason the
team selected Mongo is that they have good experience with running it, and given that products and
payments have flexible metadata, we think it will be a good fit.

From a development perspective, it also means we don’t need to write any database migration scripts.

So, let’s first connect to Mongo and then implement a product repository:

1. In repository.go, let’s define a Mongo implementation. If you are going to have a lot of code or different implementations,

you may want to store it in a different file. For now, I think it’s fine in one:

type MongoRepository struct {

 purchases *mongo.Collection

}

func NewMongoRepo(ctx context.Context, connectionString string) (*MongoRepository, error)

{

 client, err := mongo.Connect(ctx, options.Client().ApplyURI(connectionString))

 if err != nil {

 return nil, fmt.Errorf("failed to create a mongo client: %w", err)

 }

 purchases := client.Database("coffeeco").Collection("purchases")

 return &MongoRepository{

 purchases: purchases,

 }, nil

}

2. Firstly, we define MongoRepository and write some basic code to connect. We return any errors. For this to work, you’ll need

to add two imports for the official Mongo Golang package. Therefore, your imports should now look like the following:

import (

 "context"

 "fmt"

 "time"

 "github.com/Rhymond/go-money"

 "github.com/google/uuid"

 "go.mongodb.org/mongo-driver/mongo"

 "go.mongodb.org/mongo-driver/mongo/options"

 coffeeco "coffeeco/internal"

 "coffeeco/internal/payment"

 "coffeeco/internal/store"

)

3. Now that we have the basic code to connect to Mongo, we need to satisfy the Repository interface we defined before. Let’s do

that:

func (mr *MongoRepository) Store(ctx context.Context, purchase Purchase) error {

 mongoP := New(purchase)

 _, err := mr.purchases.InsertOne(ctx, mongoP)

 if err != nil {

 return fmt.Errorf("failed to persist purchase: %w", err)

 }

 return nil

}

4. Here, we also call a toMongoPurchase function:

type mongoPurchase struct {

 id uuid.UUID

 store store.Store

 productsToPurchase []coffeeco.Product

 total money.Money

 paymentMeans payment.Means

 timeOfPurchase time.Time

 cardToken *string

}

func toMongoPurchase(p Purchase) mongoPurchase {

 return mongoPurchase{

 id: p.id,

 store: p.Store,

 productsToPurchase: p.ProductsToPurchase,

 total: p.total,

 paymentMeans: p.PaymentMeans,

 timeOfPurchase: p.timeOfPurchase,

 cardToken: p.cardToken,

 }

}

The reason we do this is to decouple our purchase aggregate from the Mongo implementation. We
should also decouple all the other domain models from the database models, but I will leave that as
an exercise for you.

For now, that’s all we need. Our repository layer is very simple and lightweight, which is a sign that
DDD is really helping us here.

Adding an infrastructure service for payment handling

For our payment service, we are going to use Stripe. Like our Mongo repository, we are going to
decouple ourselves from Stripe as much as possible, as it is not part of our domain, and it is a tool
that the company may change its mind on in the future. This can be particularly true for payment
services if a cheaper option comes along.

So, here’s how we connect Stripe from our service:

1. First, let’s make stripe.go in our payment package:

Figure 5.11 – stripe.go added to the payment folder

2. Next, let’s add some basic code to initialize Stripe:

package payment

import (

 "context"

 "errors"

 "fmt"

 "github.com/Rhymond/go-money"

 "github.com/stripe/stripe-go/v73"

 "github.com/stripe/stripe-go/v73/charge"

 "github.com/stripe/stripe-go/v73/client"

)

type StripeService struct {

 stripeClient *client.API

}

func NewStripeService(apiKey string) (*StripeService, error) {

 if apiKey == "" {

 return nil, errors.New("API key cannot be nil ")

 }

 sc := &client.API{}

 sc.Init(apiKey, nil)

 return &StripeService{stripeClient: sc}, nil

}

Notice how we have imported the official Stripe package. You will need to add this to your go.mod.

3. Now that we have an initialized Stripe client, we need to satisfy the interface for CardChargeService. As a reminder, this is

the interface:

type CardChargeService interface {

 ChargeCard(ctx context.Context, amount money.Money, cardToken string) error

}

We, therefore, implement that function on our StripeService struct:

func (s StripeService) ChargeCard(ctx context.Context, amount money.Money, cardToken string)

error {

 params := &stripe.ChargeParams{

 Amount: stripe.Int64(amount.Amount()),

 Currency: stripe.String(string(stripe.CurrencyUSD)),

 Source: &stripe.PaymentSourceSourceParams{Token: stripe.String(cardToken)},

 }

 _, err := charge.New(params)

 if err != nil {

 return fmt.Errorf("failed to create a charge:%w", err)

 }

 return nil

}

This is near enough a copy and paste from the Stripe documentation (which is excellent). You can
read more about creating charges in Stripe here: https://stripe.com/docs/api/charges/create?lang=go.

https://stripe.com/docs/api/charges/create?lang=go

CHALLENGE
See whether you can implement a different CardChargeService, perhaps using Square:

https://developer.squareup.com/gb/en/online-payment-apis.

Now that we have done that, let’s go back to our business requirements!

Paying with CoffeeBux

Our system is looking good! It is modular and easy to extend…so let’s extend it.

As of now, we haven’t satisfied all our business requirements. The requirements state that coffee
lovers should get a coffee free after they have purchased 10 already. This means we need to track the
number of purchases and also allow customers to pay with CoffeeBux. Let’s design an entity to help
us do this:

1. First, let’s change our code so we are tracking free drinks. Let’s add the following to coffeebux.go:

func (c *CoffeeBux) AddStamp() {

 if c.RemainingDrinkPurchasesUntilFreeDrink == 1 {

 c.RemainingDrinkPurchasesUntilFreeDrink = 10

 c.FreeDrinksAvailable += 1

 } else {

 c.RemainingDrinkPurchasesUntilFreeDrink--

 }

}

This code checks whether we need to increment our free drink count and reset our purchased drinks
counter. Otherwise, we just add a virtual stamp.

2. Now, let’s go to purchase.go and update our purchase function to the following:

func (s Service) CompletePurchase(ctx context.Context, purchase *Purchase, coffeeBuxCard

*loyalty.CoffeeBux) error {

 if err := purchase.validateAndEnrich(); err != nil {

 return err

 }

 switch purchase.PaymentMeans {

https://developer.squareup.com/gb/en/online-payment-apis

 case payment.MEANS_CARD:

 if err := s.cardService.ChargeCard(ctx, purchase.total, *purchase.cardToken); err

!= nil {

 return errors.New("card charge failed, cancelling purchase")

 }

 case payment.MEANS_CASH:

 // For the reader to add :)

 default:

 return errors.New("unknown payment type")

 }

 if err := s.purchaseRepo.Store(ctx, *purchase); err != nil {

 return errors.New("failed to store purchase")

 }

 if coffeeBuxCard != nil {

 coffeeBuxCard.AddStamp()

 }

 return nil

}

Here, we have changed the signature of CompletePurchase to include CoffeeBuxCard. Notice how it’s
a pointer. This is because a customer is under no obligation to present a loyalty card and therefore, it
can be nil.

At the bottom of our function, after a user has paid and they have persisted the purchase successfully,
we add a stamp to their loyalty card. Notice how easy it was to add and how easy it is to follow our
code?

3. We now need to add our loyalty card as a payment source. This is an interesting problem from a domain perspective because a
loyalty card now belongs in both the payment and the loyalty domain. There are lots of different ways we could solve this

problem and there is no wrong answer. The way we will solve it is to add CoffeeBux as a payment means. We actually already did
this, and you can see it in means.go:

const (

 MEANS_CARD = "card"

 MEANS_CASH = "cash"

 MEANS_COFFEEBUX = "coffeebux"

)

4. And in loyalty.go, we will add the following code:

func (c *CoffeeBux) Pay(ctx context.Context, purchases []purchase.Purchase) error {

 lp := len(purchases)

 if lp == 0 {

 return errors.New("nothing to buy")

 }

 if c.FreeDrinksAvailable < lp {

 return fmt.Errorf("not enough coffeeBux to cover entire purchase. Have %d, need

%d", len(purchases), c.FreeDrinksAvailable)

 }

 c.FreeDrinksAvailable = c.FreeDrinksAvailable - lp

 return nil

}

In this code block, we program defensively and ensure that purchases is not empty. We then check
there are enough free drinks to accommodate the entire purchase.

NOTE
We have made an assumption here that we should validate with the domain experts – it might be that they want to allow
partial redemption of a purchase against a loyalty card. If that is so, our implementation is wrong, and we’d need to change
it.

After this, we simply remove the necessary amount of free drinks from the CoffeeBux card.

We now have everything we need to accept payment in CoffeeBux, so let’s go ahead and add it to
purchase.go:

func (s Service) CompletePurchase(ctx context.Context, purchase *Purchase, coffeeBuxCard

*loyalty.CoffeeBux) error {

 if err := purchase.validateAndEnrich(); err != nil {

 return err

 }

 switch purchase.PaymentMeans {

 case payment.MEANS_CARD:

 if err := s.cardService.ChargeCard(ctx, purchase.total, *purchase.cardToken); err !=

nil {

 return errors.New("card charge failed, cancelling purchase")

 }

 case payment.MEANS_CASH:

 // For the reader to add :)

 case payment.MEANS_COFFEEBUX:

 if err := coffeeBuxCard.Pay(ctx, purchase.ProductsToPurchase); err != nil {

 return fmt.Errorf("failed to charge loyalty card: %w", err)

 }

 default:

 return errors.New("unknown payment type")

 }

 if err := s.purchaseRepo.Store(ctx, *purchase); err != nil {

 return errors.New("failed to store purchase")

 }

 if coffeeBuxCard != nil {

 coffeeBuxCard.AddStamp()

 }

 return nil

}

We have added the ability to pay with your CoffeeBux card. However, there is a potential bug here.
Can you spot it?

Right now, if you pay with your CoffeeBux card, you still earn a loyalty stamp. This is something we
need to consult our domain experts about to see whether this is the correct business invariant.

We have one final feature to add to fulfill the project brief, which is to add store-specific discounts.
Before we propose a solution in the next section, try and think about how you might approach it.
Even better, try and implement it!

Adding store-specific discounts

First, we need to save store-specific discounts somewhere. We therefore need a repository layer:

1. Let’s add repository.go to our store package:

Figure 5.12 – repository.go added to the store folder

2. And add the following code:

package store

import (

 "context"

 "errors"

 "fmt"

 "github.com/google/uuid"

 "go.mongodb.org/mongo-driver/bson"

 "go.mongodb.org/mongo-driver/mongo"

 "go.mongodb.org/mongo-driver/mongo/options"

)

var ErrNoDiscount = errors.New("no discount for store")

type Repository interface {

 GetStoreDiscount(ctx context.Context, storeID uuid.UUID) (int, error)

}

type MongoRepository struct {

 storeDiscounts *mongo.Collection

}

func NewMongoRepo(ctx context.Context, connectionString string) (*MongoRepository, error)

{

 client, err := mongo.Connect(ctx, options.Client().ApplyURI(connectionString))

 if err != nil {

 return nil, fmt.Errorf("failed to create a mongo client: %w", err)

 }

 discounts := client.Database("coffeeco").Collection("store_discounts")

 return &MongoRepository{

 storeDiscounts: discounts,

 }, nil

}

func (m MongoRepository) GetStoreDiscount(ctx context.Context, storeID uuid.UUID)

(float32, error) {

 var discount float32

 if err := m.storeDiscounts.FindOne(ctx, bson.D{{"store_id",

storeID.String()}}).Decode(&discount); err != nil {

 if err == mongo.ErrNoDocuments {

 // This error means your query did not match any documents.

 return 0, ErrNoDiscount

 }

 return 0, fmt.Errorf("failed to find discount for store: %w", err)

 }

 return discount, nil

}

A lot of this code should look familiar from our previous repository layer. We may want to move
some of the connection logic for a Mongo connection or pool of connections to a different package
that we could share in the future.

When we use GetStoreDiscount, we check the error type; if it is ErrNoDocuments, we want to return a
specific ErrNoDiscount error so that in the preceding layer, we know it’s not a real error.

If all goes well, we simply return our store discount.

3. Let’s make an interface for StoreService in purchase.go:

type StoreService interface {

 GetStoreSpecificDiscount(ctx context.Context, storeID uuid.UUID) (float32, error)

}

4. We will now add this interface to PurchaseService:

type Service struct {

 cardService CardChargeService

 purchaseRepo Repository

 storeService StoreService

}

5. We then update our CompletePurchase function as follows:

func (s Service) CompletePurchase(ctx context.Context, storeID uuid.UUID, purchase

*Purchase, coffeeBuxCard *loyalty.CoffeeBux) error {

 if err := purchase.validateAndEnrich(); err != nil {

 return err

 }

 discount, err := s.storeService.GetStoreSpecificDiscount(ctx, storeID)

 if err != nil && err != store.ErrNoDiscount {

 return fmt.Errorf("failed to get discount: %w", err)

 }

 purchasePrice := purchase.total

 if discount > 0 {

 purchasePrice = *purchasePrice.Multiply(int64(100 - discount))

 }

 switch purchase.PaymentMeans {

 case payment.MEANS_CARD:

 if err := s.cardService.ChargeCard(ctx, purchase.total, *purchase.cardToken); err

!= nil {

 return errors.New("card charge failed, cancelling purchase")

 }

 case payment.MEANS_CASH:

 // For the reader to add :)

 case payment.MEANS_COFFEEBUX:

 if err := coffeeBuxCard.Pay(ctx, purchase.ProductsToPurchase); err != nil {

 return fmt.Errorf("failed to charge loyalty card: %w", err)

 }

 default:

 return errors.New("unknown payment type")

 }

 if err := s.purchaseRepo.Store(ctx, *purchase); err != nil {

 return errors.New("failed to store purchase")

 }

 if coffeeBuxCard != nil {

 coffeeBuxCard.AddStamp()

 }

 return nil

}

This is looking a little complex to read and isn’t using a lot of domain-specific language in our
service layer, so let’s refactor a little:

func (s Service) CompletePurchase(ctx context.Context, storeID uuid.UUID, purchase

*Purchase, coffeeBuxCard *loyalty.CoffeeBux) error {

 if err := purchase.validateAndEnrich(); err != nil {

 return err

 }

 if err := s.calculateStoreSpecificDiscount(ctx, storeID, purchase); err != nil {

 return err

 }

 switch purchase.PaymentMeans {

 case payment.MEANS_CARD:

 if err := s.cardService.ChargeCard(ctx, purchase.total, *purchase.cardToken); err !=

nil {

 return errors.New("card charge failed, cancelling purchase")

 }

 case payment.MEANS_CASH:

 // For the reader to add :)

 case payment.MEANS_COFFEEBUX:

 if err := coffeeBuxCard.Pay(ctx, purchase.ProductsToPurchase); err != nil {

 return fmt.Errorf("failed to charge loyatly card: %w", err)

 }

 default:

 return errors.New("unknown payment type")

 }

 if err := s.purchaseRepo.Store(ctx, *purchase); err != nil {

 return errors.New("failed to store purchase")

 }

 if coffeeBuxCard != nil {

 coffeeBuxCard.AddStamp()

 }

 return nil

}

func (s *Service) calculateStoreSpecificDiscount(ctx context.Context, storeID uuid.UUID,

purchase *Purchase) error {

 discount, err := s.storeService.GetStoreSpecificDiscount(ctx, storeID)

 if err != nil && err != store.ErrNoDiscount {

 return fmt.Errorf("failed to get discount: %w", err)

 }

 purchasePrice := purchase.total

 if discount > 0 {

 purchase.total = *purchasePrice.Multiply(int64(100 - discount))

 }

 return nil

}

Here, we have added a calculateStoreSpecificDiscount function and updated our service layer. It is
much cleaner now, and it will be easier to speak to our domain experts about it.

6. Finally, we need to implement storeService to satisfy the interface:

type Service struct {

 repo Repository

}

func (s Service) GetStoreSpecificDiscount(ctx context.Context, storeID uuid.UUID)

(float32, error) {

 dis, err := s.repo.GetStoreDiscount(ctx, storeID)

 if err != nil {

 return 0, err

 }

 return float32(dis), nil

}

We have now written an entire service using the domain-driven concept. The finished package
structure is as follows:

Figure 5.13 – The final package structure for our application

I have provided main.go to make it runnable and a docker-compose file in the GitHub repo here:
https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter5. This
will enable you to run it and test it easily. In the README file, there are instructions on how to get it all
started.

https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter5

Extending our service

As an exercise, here are some features you might want to try and add to extend the service:

Add an online store that allows customers to order a subscription

Add drinks in different sizes

Add unit tests

Add an integration test

If you get them working, please feel free to create a PR into the example repo; I’d love to see them.

APPLYING DDD TO AN EXISTING MONOLITHIC APPLICATION
If you already work on a monolithic application, it is still worth trying to apply some of the patterns we have discussed
throughout this book. My advice would be to start with building a strong relationship with the domain experts in your
company. Together, you can start to build a ubiquitous language. If you start to reflect this in your code, you will notice that
you will be able to start having much more meaningful and aligned conversations with them.

It might be that moving to repositories and domain objects is too much of a refactor. That’s okay. I would recommend that
the infrastructure be the place where spending the time to decouple yourself from specific APIs (like we did with Stripe) is a
valuable use of time. It will keep your business logic clearer and give the business more options when considering new
providers in the future.

Summary
In this chapter, we got hands-on with Golang and built an entire application from scratch. We started
by understanding the problem domain and building out a robust, ubiquitous language. We then built
an application by splitting our application into domains, aggregates, repositories, services, and
infrastructure services. Hopefully, you now see the true value of domain-driven design (if it was ever
in doubt) and you are able to apply DDD principles to your own projects. In my experience, this is a
highly desirable trait that is worth discussing when you are interviewing for new jobs.

In the next chapter, we will be looking at microservices, how they differ from monolithic
applications, and what new things we need to consider when building them with domain-driven
design in mind.

Further reading
Stripe developer documentation: https://stripe.com/docs

Using Go to connect to Mongo: https://www.mongodb.com/docs/drivers/go/current/

What is a minimal viable product (MVP)?: https://www.agilealliance.org/glossary/mvp/

https://stripe.com/docs
https://www.mongodb.com/docs/drivers/go/current/
https://www.agilealliance.org/glossary/mvp/

6

Building a Microservice Using DDD
In the previous chapter, we discussed how to build a monolithic application using domain-driven
design (DDD). As your organization and code base scale, you may consider migrating to a
microservice-based approach for development. To do this well, we need to use some DDD concepts
we saw in the last chapter, but also some we did not. We know we are going to need to communicate
with other microservices, and therefore we will be revisiting the anti-corruption layers, as well as
ports and adaptors, that we learned about in Chapter 2, Ubiquitous Language Bounded Contexts,
Domains, and Sub-Domains.

In this chapter, we will do the following:

Learn what a microservice is, and how it differs from a monolithic application

Learn at a high level when you and your company may benefit from considering a microservice-based architecture

Build another service from scratch, using the ports and adaptor pattern, as well as the anti-corruption layer pattern

By the end of this chapter, we will have built an entire microservice from scratch that interacts with
other microservices (accounting for failure scenarios) by using domain-driven principles.

Technical requirements
In this chapter, we will write a large amount of Golang code. To be able to follow along, you will
need the following:

Golang installed on your machine. You can find instructions to install it here: https://go.dev/doc/install. The code in this chapter
was written with Go 1.19.3 installed, so anything later than this should be fine.

Some sort of text editor or IDE. Some popular options are VS Code (https://code.visualstudio.com/download) or GoLand
(https://www.jetbrains.com/help/go/installation-guide.html). All screenshots in this section are taken from GoLand.

Access to GitHub. All code for this section can be found here: https://github.com/PacktPublishing/Domain-Driven-Design-with-
GoLang/tree/main/chapter6.

Docker installed. We will use this to run a database on our machine. You can find instructions on how to install Docker here:
https://docs.docker.com/compose/install.

A FRIENDLY WARNING (AGAIN)
The application we are going to create in this chapter is intended for demonstration and to really highlight how to work in
the DDD style. It is not production-ready, and we will be skipping lots of best practices such as testing and documentation.
These are critically important, but beyond the scope of this book.

Let’s get started by looking at what a microservice is.

https://go.dev/doc/install
https://code.visualstudio.com/download
https://www.jetbrains.com/help/go/installation-guide.html
https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter6
https://docs.docker.com/compose/install

What do we mean by microservices?
Microservices, or microservice architecture, is a pattern of software development where teams build
small services, with their own databases that communicate by some form of Remote Procedure Call
(RPC). Microservices are as much an organizational decision as they are a technical one; the goal is
to make it as simple as possible to scale both teams and software.

The following diagram shows how an imaginary monolith might be split into microservices:

Figure 6.1 – A monolithic application split into three smaller services

Microservices typically exhibit the following characteristics:

The service can be developed, deployed, and scaled independently; it should not impact the function of other services. It does not
share code with other services, and communication with other services happens over some form of RPC.

The service does not depend on other services being available to be successful. This does not necessarily mean it can do 100% of
its function without another service being available, but it does mean another service crashing should not lead to our service
crashing.

The service solves a specific problem and solves it well. As the system grows more capabilities, it might be reconsidered to be
broken into smaller microservices.

Microservices sound great! Let’s look at their benefits in more detail.

What are the benefits of microservices?

The following are some of the key benefits of microservices:

Microservices enable teams to move fast. Teams work and act within a small well-defined context and are empowered to make
decisions themselves. This means the software development life cycle can be completed much quicker.

Flexible scaling. Services can be scaled for their specific needs rather than just having one global configuration.

Easier deployments. Since the code base is smaller and more focused, it is easier to build a deployment approach that suits your
needs. Because it’s faster, it also encourages and enables more experimentation as changes can be easily tested and rolled back.

Freedom to explore different technologies. Using a different programming language or database is no problem in a microservice
architecture.

More resilient. Patterns can be adopted to ensure most of our architecture is available even when others are facing problems. We
will explore this more in this chapter.

Up to now, we have made microservices sound like a silver bullet; they are not. They come with
some major downsides. Let’s look at these.

What are the downsides of microservices?

The following are the key drawbacks:

Distributed systems require more expertise to manage than a monolithic architecture. Without much better visibility and tooling,
you may see errors and issues that can appear “random”.

Engineers need to have a wider skillset than those who work on monolithic architectures. They may need to become familiar with
platforms such as Kubernetes, and they need to think and care more about latency and networking.

Testing user journeys can be much harder, especially in event-driven systems.

As you can see, microservices are not a free lunch, and their adoption needs to be considered
carefully. Let’s explore the adoption considerations together.

Should my company adopt microservices?
As with all technology initiatives, microservices come with trade-offs. What might be a great fit for
one company might be a terrible fit for yours. Be sure to have a wide discussion with your team and
be honest about the challenges ahead. Some questions you might want to answer:

Do we have the expertise to run a distributed system? If not, what is our strategy to hire that expertise or train our staff?

Do we have the necessary tooling in place to monitor a distributed system? If not, will we get the budget and time to put these in
place?

Which platform will we use to manage our distributed system? Kubernetes? Something else?

How comfortable is our team with the said platform?

How comfortable are our teams with building and owning their own CI/CD pipelines?

All these questions are basically lower-level questions that roll up to the ultimate question: will
leadership invest the money and give us the time to do this?

Now that we understand the pros and cons of microservices, let’s go ahead and build a microservice
using DDD patterns and Golang!

Setting the scene (again)
You work for a travel comparison website. Your team is responsible for making recommendations on
where a customer might be able to travel, given their budget and other factors. Your team is known
internally as the recommendations team. Your team has been asked to expose your recommendations
via an API so that other teams in the company may use it to build their own products.

There is another team in your company that is responsible for working with travel providers to
onboard them and aggregate their costs and offer information to your system. They are known as the
partnership team.

For your project, you are going to need to call the partnership system to gather information to allow
you to create recommendations. The documentation for the partnership team is quite sparse, but
thankfully the team has the following published details available on its team wiki:

"If you make a GET request to /partnerships?location=$country&from=$date&to=$date we will

return all the hotels in that country on those dates.

$country must be in Alpha 3 ISO-3166 format and the date must be ISO-8601 format. You can

expect one of the following responses:

400. This means you made a bad request, and your parameters aren't in the correct format or

were missing.

401. You are not authorized. You must pass an agreed password in the Authorization header

field"

200. This means your request was successful. You can expect the following response:

{

 "availableHotels": [

 {

 "name": "hotel1_name",

 "priceInUSDPerNight": 500

 },

 {

 "name": "hotel2_name",

 "priceInUSDPerNight": 300

 }

]

}

There is no pagination, so if there are lots of hotels, the response could be slow.

This API can be a little temperamental so fails sometimes; we are not sure why. If you are

going to call it, please prepare for intermittent failure. Due to this, we are going to

rebuild the system soon, so don't recommend being too coupled to this specific API. If it

fails, you will receive a 500 response with no body.

Although not in the OpenAPI format we discussed in Chapter 2, this documentation is succinct and
helpful. It tells us everything we need to know and even gives us some reminders to implement
patterns that will help us manage failures that may occur due to our system being distributed.

A few notes before we proceed:

ISO is the International Organization for Standardization. It develops and publishes international standards for all sorts of
things, including dates, currency codes, and times.

Alpha 3 ISO-3166 is one of the formats that they have defined, which outlines a three-character representation of each country.
This standard is widely adopted and implemented in many libraries across many programming languages. By using this and being

clear it is using it, the team had made an easy way for us to communicate our intention regarding our country to it without
ambiguity. An example Alpha 3 ISO-3166 country code is URK, which represents Ukraine.

ISO-8601 is a format defined for timestamps. An example of this is 1969-01-14, which represents January 14, 1969.

We now know what we need to build and the other systems we need to talk to, so let’s get started!

Building a recommendation system
To ensure we can focus on the important pieces of building a microservice using DDD principles, I
have provided some sample code for this chapter. It’s available here:
https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter6. In the
repository, you will find an already completed Go program called partnerships. This is an API that
gives back a response in the preceding format. However, to make it represent the system described
previously, 30% of all requests will fail. You can run this program by running docker-compose up.

Once running, you can type the following into your terminal:

curl --location --request GET 'http://localhost:3031/partnerships?location=UK'

If you do this a few times, you will notice you get one of two responses back. One is a 500 response,
with no body. The other is this:

{

 "availableHotels": [

 {

 "name": "some hotel",

 "priceInUSDPerNight": 300

 },

 {

 "name": "some other hotel",

 "priceInUSDPerNight": 30

 },

 {

 "name": "some third hotel",

 "priceInUSDPerNight": 90

 },

 {

 "name": "some fourth hotel",

 "priceInUSDPerNight": 80

 }

]

}

We will use this API to develop our recommendation system.

Let’s get started by creating a couple of folders, as shown in the following screenshot:

https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter6

Figure 6.2 – Our folder structure so far

Here, we have made a new folder called recommendation. This will be the project’s root. We have also
made a cmd folder that is going to be the folder for our main binary, and an internal folder for our
domain logic. This looks very similar to the service we started with in the previous chapter.

Inside internal, let’s make another folder called recommendation and a file called recommendation.go.
This is going to be where we write our domain recommendation service:

Figure 6.3 – Creation of recommendation.go

Let’s add a domain model:

type Recommendation struct {

 TripStart time.Time

 TripEnd time.Time

 HotelName string

 Location string

 TripPrice money.Money

}

Notice how we have used domain language again.

Next, we are going to define an interface for the partnerships system:

type Option struct {

 HotelName string

 Location string

 PricePerNight money.Money

}

type AvailabilityGetter interface {

 GetAvailability(ctx context.Context, tripStart time.Time, tripEnd time.Time, location

string) ([]Option, error)

}

Notice here how we have not coupled our interface to the partnership’s implementation at all. We
have used domain language from our bounded context and defined what a reasonable, sensible
interface is. This will help us a lot in the long run, as it will make moving to the new partnerships
system much easier.

Let’s create a service to house wrap this interface:

type Service struct {

 availability AvailabilityGetter

}

func NewService(availability AvailabilityGetter) (*Service, error) {

 if availability == nil {

 return nil, errors.New("availability must not be nil")

 }

 return &Service{availability: availability}, nil

}

We have also created a NewService function that does some basic validation to ensure our service is in
a good state before we use it.

Next, we are going to define a function called Get with the following signature:

func (svc *Service) Get(ctx context.Context, tripStart time.Time, tripEnd time.Time,

location string, budget money.Money) (*Recommendation, error) {}

This function is in the recommendation package, so will be referred to as recommendation.Get, which
makes clear what it does.

Let’s implement some basic validation checks:

func (svc *Service) Get(ctx context.Context, tripStart time.Time, tripEnd time.Time,

location string, budget money.Money) (*Recommendation, error) {

 switch {

 case tripStart.IsZero():

 return nil, errors.New("trip start cannot be empty")

 case tripEnd.IsZero():

 return nil, errors.New("trip end cannot be empty")

 case location == "":

 return nil, errors.New("location cannot be empty")

 }

 return nil, nil

}

From our domain rules, we know these cannot be empty, and it’s always a good idea to validate.

Now we know that all our parameters are valid, we need to call the availability service:

opts, err := svc.availability.GetAvailability(ctx, tripStart, tripEnd, location)

if err != nil {

 return nil, fmt.Errorf("error getting availability: %w", err)

}

Note that we do not actually have a concrete implementation of this service yet and we do not know
how it works. However, it does not stop us from developing our recommendation system.

Finally, let’s do the calculation to make a recommendation:

tripDuration := math.Round(tripEnd.Sub(tripStart).Hours() / 24)

lowestPrice := money.NewFromFloat(999999999, "USD")

var cheapestTrip *Option

for _, option := range opts {

 price := option.PricePerNight.Multiply(int64(tripDuration))

 if ok, _ := price.GreaterThan(budget); ok {

 continue

 }

 if ok, _ := price.LessThan(lowestPrice); ok {

 lowestPrice = price

 cheapestTrip = &option

 }

}

if cheapestTrip == nil {

 return nil, errors.New("no trips within budget")

}

return &Recommendation{

 TripStart: tripStart,

 TripEnd: tripEnd,

 HotelName: cheapestTrip.HotelName,

 Location: cheapestTrip.Location,

 TripPrice: *lowestPrice,

}, nil

Here, we calculate the trip duration so that we can figure out if, given the price per night, we can find
a trip within budget. We then loop through all the options we got back from our availability service,
skipping any that are outside of the budget. Finally, we return an error if there is none within budget,
and a recommendation for the cheapest if there were several. This is a small service, and it has used
lots of language from our bounded context.

Let’s take a closer look at the AvailabilityGetter interface and the DDD adaptor pattern.

Revisiting the anti-corruption layer
We looked at the anti-corruption layer (also known as the adapter pattern) in Chapter 2. As a
reminder, the adaptor pattern is useful for decoupling two different bounded contexts from each
other, which helps separate concerns and ensure our systems can evolve independently and safely.

Let’s add an adaptor layer that satisfies the AvailabilityGetter interface.

Firstly, let’s make a new file called adapter.go:

Figure 6.4 – Creation of adapter.go

Firstly, let’s define a client struct and a New function:

type PartnershipAdaptor struct {

 client *http.Client

 url string

}

func NewPartnerShipAdaptor(client *http.Client, url string) (*Client, error) {

 if client == nil {

 return nil, errors.New("client cannot be nil")

 }

 if url == "" {

 return nil, errors.New("url cannot be empty")

 }

 return &Client{client: client, url: url}, nil

}

This is a pattern we have used throughout the book; we are simply validating that nothing we expect
to not be empty or nil is.

Next, we want our adaptor to satisfy the AvailabilityGetter interface. This means we need to add
the GetAvailability function to the client. Let’s stub that out:

func (p PartnershipAdaptor) GetAvailability(ctx context.Context, tripStart time.Time,

tripEnd time.Time, location string) ([]Option, error) {

 return nil,nil

}

Great! Let’s start implementing it:

from := fmt.Sprintf("%d-%d-%d", tripStart.Year(), tripStart.Month(), tripStart.Day())

to := fmt.Sprintf("%d-%d-%d", tripEnd.Year(), tripEnd.Month(), tripEnd.Day())

url := fmt.Sprintf("%s/partnerships?location=%s&from=%s&to=%s", p.url, location, from, to)

res, err := p.client.Get(url)

if err != nil {

 return nil, fmt.Errorf("failed to call partnerships: %w", err)

}

defer res.Body.Close()

if res.StatusCode != http.StatusOK {

 return nil, fmt.Errorf("bad request to partnerships: %d", res.StatusCode)

}

Firstly, we make a GET call to the partnership endpoint using the client we have passed in. We will
revisit this later to talk about how to ensure this is more resilient.

Assuming this is successful, we want to access the response. Therefore, we need to define what that
response looks like as a Golang struct. We know what the response looks like from the partnership
team’s documentation, so we can define it as follows:

type partnerShipsResponse struct {

 AvailableHotels []struct {

 Name string `json:"name"`

 PriceInUSDPerNight int `json:"priceInUSDPerNight"`

 } `json:"availableHotels"`

}

We can now decode the response from the request into this struct:

var pr partnerShipsResponse

if err := json.NewDecoder(res.Body).Decode(&pr); err != nil {

 return nil, fmt.Errorf("could not decode the response body of partnerships: %w", err)

}

Finally, we need to convert the response from the partnerships’ structure into our required []Options:

opts := make([]Option, len(pr.AvailableHotels))

for i, p := range pr.AvailableHotels {

 opts[i] = Option{

 HotelName: p.Name,

 Location: location,

 PricePerNight: *money.New(int64(p.PriceInUSDPerNight), "USD"),

 }

}

return opts, nil

Since we know the response size, we can make an array of the exact size we need and fill it as we
iterate over AvailableHotels.

The entire function, therefore, looks like this:

func (p PartnershipAdaptor) GetAvailability(ctx context.Context, tripStart time.Time,

tripEnd time.Time, location string) ([]Option, error) {

 res, err := p.client.Get(fmt.Sprintf("%s/partnerships?location=%s?from=%s?to=%s ", p.url,

location, tripStart, tripEnd))

 if err != nil {

 return nil, fmt.Errorf("failed to call partnerships: %w", err)

 }

 defer res.Body.Close()

 var pr partnerShipsResponse

 if err := json.NewDecoder(res.Body).Decode(&pr); err != nil {

 return nil, fmt.Errorf("could not decode the response body of partnerships: %w", err)

 }

 opts := make([]Option, len(pr.AvailableHotels))

 for i, p := range pr.AvailableHotels {

 opts[i] = Option{

 HotelName: p.Name,

 Location: location,

 PricePerNight: *money.New(int64(p.PriceInUSDPerNight), "USD"),

 }

 }

 return opts, nil

}

This is everything we need for our adapter layer (apart from testing it rigorously, of course).

Exposing our service via an open host service
We have a requirement that our service must also expose an API. This is so other microservices or
user interfaces may call us to get a recommendation. One method we could use to do this is to
generate an API using OpenAPI or gRPC, as we discussed in Chapter 2. However, for completeness,
we are going to write this one from scratch.

Let’s define a contract first. We are going to create an API that receives the following request:

/recommendation?location=$country?from=$date&to=$date&budget =$budget

It returns the following response:

{

 "hotelName": "hotel Name",

 "totalCost": {

 "cost": 300,

 "currency": "USD"

 }

}

Notice how the response we intend to return is different from the partnership system? This is
completely normal. We own our domain, and as such, we can decide on requests/responses that make
sense given the use case of our system. Typically, we will work with teams that will be calling our
service to ensure we are returning something that is reasonable for their use case, but also makes
sense for our API to return.

Now we have a contract, let’s go ahead and define an HTTP handler. Firstly, let’s define the
following:

type Handler struct {

 svc Service

}

func NewHandler(svc Service) (*Handler, error) {

 if svc == (Service{}) {

 return nil, errors.New("service cannot be empty")

 }

 return &Handler{svc: svc}, nil

}

In the preceding code, we define a Handler struct and a New function that does some basic validation
to ensure it’s not empty. We will need the Service shortly since our Handler function is just a means
to expose our business logic, and our business logic lives on our Service.

Next, let’s define a struct that matches the contract we created previously:

type GetRecommendationResponse struct {

 HotelName string `json:"hotelName"`

 TotalCost struct {

 Cost int64 `json:"cost"`

 Currency string `json:"currency"`

 } `json:"totalCost"`

}

We will use this shortly to marshal/unmarshal our response from Golang to JSON.

Finally, we can define our actual Handler function. Let’s do it in stages since it’s quite verbose:

func (h Handler) GetRecommendation(w http.ResponseWriter, req *http.Request) {

 q := mux.Vars(req)

 location, ok := q["location"]

 if !ok {

 w.WriteHeader(http.StatusBadRequest)

 return

 }

 from, ok := q["from"]

 if !ok {

 w.WriteHeader(http.StatusBadRequest)

 return

 }

 to, ok := q["to"]

 if !ok {

 w.WriteHeader(http.StatusBadRequest)

 return

 }

 budget, ok := q["budget"]

 if !ok {

 w.WriteHeader(http.StatusBadRequest)

 return

 }

GetRecomendation matches the criteria for a Handler function. This will be important in a moment
because it means we can register it on an HTTP router, and therefore we’ll be able to expose it to the
outside world for others to call it.

We are using the github.com/gorilla/mux package to extract all the expectation query strings from
our request and check they are not empty. If any of them are, we return a bad request response. This
serves as another adaptor layer and protects our business logic from receiving requests that will never
succeed due to missing pre-requisite information:

const expectedFormat = "2006-01-02"

formattedStart, err := time.Parse(expectedFormat, from)

if err != nil {

 w.WriteHeader(http.StatusBadRequest)

 return

}

formattedEnd, err := time.Parse(expectedFormat, to)

if err != nil {

 w.WriteHeader(http.StatusBadRequest)

 return

}

The next thing we do is transform the dates we received on the request into a format that our service
expects and return a bad request if we cannot. Again, this allows us to “fail fast” if we know the
requests can never succeed due to not being of the right type or in the right format:

b, err := strconv.ParseInt(budget, 10, 64)

if err != nil {

 w.WriteHeader(http.StatusBadRequest)

 return

}

budgetMon := money.New(b, "USD")

We do the same thing for the budget. Our server expects the budget to be of a money type, but it is
currently a string. We need to convert it. For now, we assume all requests are USD, but this is
something we would need to improve in the future:

rec, err := h.svc.Get(req.Context(), formattedStart, formattedEnd, location, budgetMon)

if err != nil {

 w.WriteHeader(http.StatusInternalServerError)

 return

}

res, err := json.Marshal(GetRecommendationResponse{

 HotelName: rec.HotelName,

 TotalCost: struct {

 Cost int64 `json:"cost"`

 Currency string `json:"currency"`

 }{

 Cost: rec.TripPrice.Amount(),

 Currency: "USD",

 },

})

if err != nil {

 w.WriteHeader(http.StatusInternalServerError)

 return

}

w.WriteHeader(http.StatusOK)

_, _ = w.Write(res)

return

Finally, we call our service. If we receive an error from the service, we return an internal server error
since something must have gone wrong that we did not expect. If it does succeed, we marshal our
response into our expected response format and return it.

Our open host service is looking good! We mentioned previously that we used an http.handler
function type to enable us to “attach” it to a router. Let’s have a look at how we might do that.

Firstly, we are going to make an entirely new package called transport and a file called
transporthttp.go:

Figure 6.5 – Creation of transporthttp.go

This is a nice way to decouple the more specific implementation of transport types from your domain
code. The transporthttp.go file is fairly simple and looks like this:

package transport

import (

 "net/http"

 "github.com/gorilla/mux"

 "github.com/PacktPublishing/Domain-Driven-Design-with-

GoLang/chapter6/recommendation/internal/recommendation"

)

func NewMux(recHandler recommendation.Handler) *mux.Router {

 m := mux.NewRouter()

 m.HandleFunc("/recommendation", recHandler.GetRecommendation).Methods(http.MethodGet)

 return m

}

We again use the gorilla/mux package to make it easy to create a router, and we connect our service
to the /recommendation endpoint. That’s it!

We have an entire microservice now. The only thing left to do is to write a main.go file to put
everything to get it so that we can run it. Let’s do that now.

In the recommendation root folder, we create a cmd folder and a main.go file:

Figure 6.6 – Creation of main.go

In main.go, we write the main function. Let’s step through it:

package main

import (

 "log"

 "net/http"

 "github.com/hashicorp/go-retryablehttp"

 "github.com/PacktPublishing/Domain-Driven-Design-with-

GoLang/chapter6/recommendation/internal/recommendation"

 "github.com/PacktPublishing/Domain-Driven-Design-with-

GoLang/chapter6/recommendation/internal/transport"

)

func main() {

 c := retryablehttp.NewClient()

 c.RetryMax = 10

Firstly, we create a retryablehttp client using a library provided by HashiCorp. This enables us to
configure a retry policy that determines how we handle 5xx errors. This is helpful in our case as we
know the partnership service can and will fail regularly. This is an important lesson to always keep in
mind when working on distributed systems; we should always expect failure and account for it in our
programming:

partnerAdaptor, err := recommendation.NewPartnerShipAdaptor(

 c.StandardClient(),

 "http://localhost:3031",

)

if err != nil {

 log.Fatal("failed to create a partnerAdaptor: ", err)

}

Next, we create a partnerAdaptor. Our NewPartnerShipAdaptor takes an *http.StandardClient, so
we need to convert our retryablehttp client to that. Thankfully, the library provides an easy means
to do that. We also must provide a base URL for our partnership service. Here, we have hardcoded
the URL that our partnership system runs on if we do docker-compose up. You may want to move this
to be an environment variable:

svc, err := recommendation.NewService(partnerAdaptor)

if err != nil {

 log.Fatal("failed to create a service: ", err)

}

handler, err := recommendation.NewHandler(*svc)

if err != nil {

 log.Fatal("failed to create a handler: ", err)

}

Next, we make a new service and a new handler. If for any reason we cannot create either, we call
log.Fatal, which shuts down the program immediately. This is because there is no point in
proceeding as our basic pre-requisite conditions are not met:

m := transport.NewMux(*handler)

if err := http.ListenAndServe(":4040", m); err != nil {

 log.Fatal("server errored: ", err)

}

Finally, we create a server and expose it on port 4040. We now have a microservice ready to run! You
can run it by typing go run recommendation/cmd/main.go into your terminal.

Assuming you still have the Docker image running from before, you should be able to run the
following command in your terminal:

curl --location --request GET 'http://localhost:4040/recommendation?location=UK&from=2022-

09-01&to=2022-09-08&budget=5000'

After running it, you’ll see the following response:

{

 "hotelName": "some fourth hotel",

 "totalCost": {

 "cost": 210,

 "currency": "USD"

 }

}

Due to our retryablehttp client, even when the partnerships’ service returns an error, we do not see it
as it is retried automatically.

Summary
In this chapter, we have discussed the pros and cons of building microservices and seen how domain-
driven patterns such as the domain model, the anti-corruption layer, and the open host service can
help us to build maintainable microservices. We also discussed how we should expect failure and
how we could use simple patterns such as retryable HTTP calls to make our system resilient to these
failures.

In the next (and final) chapter, we are going to dig deeper into distributed systems and explore some
more advanced DDD patterns that we can use to make our system simpler to reason about, easier to
maintain, and—perhaps most importantly—easy to add new functionality to.

7

DDD for Distributed Systems
In the previous chapter, we built a microservice from scratch. The microservice we built
communicated with another microservice in a synchronous fashion to attain some data to allow it to
fulfill a business requirement. In this chapter, we are going to explore some other patterns for how
microservices might communicate and share data as part of a larger distributed system. We will cover
some patterns that have become synonymous with domain-driven design (DDD), such as
Command and Query Responsibility Segregation (CQRS) and event-driven architecture (EDA).
However, we will also cover some general distributed system concepts such as message buses and
resilient patterns. These are not strictly domain-driven concepts but are complementary nonetheless
and are certainly useful.

By the end of this chapter, you will be able to answer the following questions:

What do we mean by a distributed system?

What are CQRS and EDA?

What is event sourcing?

What is a message bus?

How can we best deal with failure?

Let’s get started.

Technical requirements
In this chapter, we will write some Golang code. To be able to follow along, you will need:

Golang installed on your machine. You can find instructions to install it here: https://go.dev/doc/install. The code in this chapter
was written with Go 1.19.3 installed, so anything later than this should be fine.

Some sort of text editor or IDE. Some popular options are VS Code (https://code.visualstudio.com/download) or GoLand
(https://www.jetbrains.com/help/go/installation-guide.html). All screenshots in this chapter are taken from GoLand.

Access to GitHub. All code for this chapter can be found here: https://github.com/PacktPublishing/Domain-Driven-Design-with-
GoLang/tree/main/chapter7.

What is a distributed system?
A distributed system is characterized as various computing components that are spread out over a
network. These devices will coordinate to complete tasks that are more efficient/not possible if a

https://go.dev/doc/install
https://code.visualstudio.com/download
https://www.jetbrains.com/help/go/installation-guide.html
https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter7

single computer were to try to achieve them. Here’s a visual example of a distributed system:

Figure 7.1 – An example of a distributed system

Distributed systems have grown in complexity over the years, but paradoxically there has never been
a better time to build and run one. Due to cloud companies such as Amazon Web Services (AWS),
Cloudflare, and DigitalOcean, getting started with complex systems is available to anyone for free
where there used to be a very high barrier to entry.

A distributed system usually has the following characteristics:

Scalable: The system can grow as workloads increase. For example, if your customers are heavily based in the United States, you
may see large traffic between 9 A.M. and 5 P.M. in the daytime, but low traffic in the evening. You may choose to scale up and
down your system to match these patterns and optimize for costs.

Fault-tolerant: If one piece of our system fails, it shouldn’t all fail. Imagine you are trying to pay for a product on a website and
it keeps saying Oops, something went wrong, please try again later; however, the rest of the site remains fully functional. You
can add things to your basket, browse other products, and leave reviews. This is fault tolerance at work; the payment system being
down does not take the rest of the sit-down.

Transparent: Our system appears as a single unit to our end users; they do not need to worry about the underlying
implementation.

Concurrent: Multiple activities can happen at the same time within our system.

Heterogenous: This is a fancy word that means we can use a variety of servers, programming languages, and paradigms. For
example, we may run some servers using Windows, and some using Linux. Some parts of our system may run in Kubernetes,

while some might run on Raspberry Pi. Some of the systems may use an event-driven model and some might be synchronous.
Some engineers may use Golang and some Python.

Replicated: Information is often replicated to enable fault tolerance. For example, one common pattern is to have a primary
Postgres database and a secondary read-only version that is replicated from the primary for redundancy.

You often must make trade-offs in the preceding categories to build a distributed system. A famous
theorem taught in computer science classes is called the CAP theorem. The CAP theorem states you
must pick two of the following categories to make guarantees about, and the third you must accept
will suffer. These are:

Consistency: Every read receives the most up-to-date information or an error.

Availability: Every request receives a non-error response, but it may not receive the most up-to-date information.

Partition tolerance: The system continues to operate even if there are network issues happening (such as packets being dropped).
In the event of a failure here, the system designer must make a choice between:

Canceling the operation and thus decreasing the availability but ensuring consistency

Proceeding with the operation and thus providing availability but risking inconsistency

Let’s look at one useful application for the CAP theorem: choosing a database for our system.

CAP theorem and databases

You’ll often see CAP theorem trade-offs used for describing databases. For example, Mongo is a
popular NoSQL database. Mongo is described as a CP database. This means it delivers consistency
and partition tolerance, but it does so at the expense of availability.

Mongo has a single primary node. This node must receive all write operations. Once persisted, these
new writes are replicated to secondary nodes. By default, clients read from the primary node to
ensure they get the most recent information, but they can also read from a secondary node if
configured to do so.

If the primary goes down, a secondary with the most recent data is promoted. The database is
unavailable at this time. Once all the secondaries catch up, the database system becomes available
again. Here is a diagram of how replication works in a Mongo cluster:

Figure 7.2 – Mongo replication

Alternatively, Cassandra is an AP database. Cassandra prioritizes availability and partition tolerance
but sacrifices consistency. Cassandra has no primary, and you can write to any of the nodes.
Cassandra claims that it can survive the complete loss of a data center and has no single point of
failure (SPOF) due to all the nodes being the same. You can also scale out Cassandra horizontally as
it uses something called “consistent hashing”. In consistent hashing, keys are distributed in an
abstract hash ring that is not dependent on the number of nodes we currently have. A simplified
example of how this works is provided here:

Figure 7.3 – Cassandra replication

As you have probably figured out, Cassandra works very differently from the traditional databases
we are used to. It can be complicated to understand and therefore takes some research and
experimentation to get comfortable with. However, it can also be very powerful and is widely used
by huge companies.

The CAP theorem is a complex topic that entire books could be written about. I have included some
further reading at the bottom of this chapter for those who wish to explore it more.

To help us build systems that can achieve all the things we have just discussed, we use various
architecture patterns. Let’s look at some of them now.

Distributed system patterns

Distributed systems can get complex quickly. Over the years, many patterns have emerged to help us
manage and thrive in this complexity. We will explore some of them next.

CQRS

Those who know a little about CQRS might be surprised that one of the first mentions of it in a book
about DDD is in the distributed system section. Let’s dig into what it is, and then we can revisit this
point.

In traditional systems and the monolithic system we built in Chapter 5, Applying DDD to a
Monolithic Application, we use the same data model and repository to create and read a database
from our database. This can work well in a lot of use cases, but as systems develop complexity, it can
be hard to manage all the queries and mapping between the data and service layer. Furthermore,
systems often have different requirements for reading and writing. For example, a system for
capturing analytics might write a lot more than it is read. It could make sense to treat these concerns
differently.

Let’s take the simple example of a website. When a user views the website, the system might use a
query model to get the relevant data to show to the user. If the user does some sort of action to
change something (perhaps update their shipping address), the system will issue a command to make
this change. A diagram of how the system might look is shown here:

Figure 7.4 – CQRS in action

CQRS is not necessary for DDD, but the sort of complex systems that benefit from DDD may also
benefit from exploring CQRS; both are there to help you model and manage complexity.

Bertrand Meyer, the creator of the Eiffel programming language and credited with creating the CQRS
pattern, suggests that we follow a few simple rules while implementing CQRS. These are as follows:

Every method should be a command that performs an action or a query that answers a question. However, no method should do
both.

Asking a question should not change the answer; queries should not mutate.

For object-oriented (OO) languages such as Java, these rules are extended to include the following:

If a method modifies the state of an object, it is a command. It should return void.

If a method returns a value and its query, it is answering a question. They should not modify the state of an object.

We can adapt these to Golang, as follows:

If a method modifies the state of the receiver struct or database, it is a command and should return an error or nil

If a method returns a value, it should not modify the database or its receiver struct

It might be tempting to try to enforce this through an interface, as follows:

type Commander interface {

 Command(ctx context.Context, args ...interface{}) error

}

type Querier interface {

 Question(ctx context.Context, args ...interface{}) (interface{}, error)

}

But I really do not recommend this. We have lost all benefits of Go’s type system here, and our
function names give little insight into what the command/query will actually be doing.

So, why is CQRS mentioned in the distributed system section of this book? In monolithic systems, I
rarely believe the CQRS pattern is the best option for managing complexity unless implemented
perfectly. However, it can work fantastically well for event-based systems (which we talk about a
little more next). Commands are a great way to model domain-event emission (for example, writing
to Kafka).

EDA

EDA is a pattern in which our distributed system produces, detects, and responds to events. An event
is defined as a significant change in state. In domain-driven systems, input and output (I/O) events
travel via a port on a protocol suited to the transport that matches the message bus you are using. For
example, RabbitMQ uses the Advanced Messaging Queuing Protocol (AMQP) protocol. We will
talk about message buses in the message bus section of this chapter.

Events are typically made up of two parts: an event header and an event body. The event header will
usually contain some meta-information about the message. For example, it might include a timestamp
of when the message was emitted, the system that emitted it, and a unique identifier (UID) for that
specific message. The body usually contains information about the state that changed. An example
body could look like this:

{

"event_type": "user.logged_in",

"user_id": 135649039"

}

In the preceding example, we have used JSON format, but some other formats popular for defining
message schemas are Protobuf, Apache Avro, and Cap’n Proto.

In event-driven systems, there will be a whole variety of messages for varying purposes being
emitted. For example, they could be logging, measuring system health, or used for dynamically
provisioning resources. The message type we are interested in regarding DDD is domain events. For

example, we might be interested in a message called user.loggedIn or purchase.failed. These
example domain events would be output by one of the microservices in our distributed system and
ingested by another.

These domain events might have significance in one specific bounded context but mean nothing to
another. This is to be expected and encouraged; there is no expectation that every system is interested
in every domain event. If a domain event is interesting within our bounded context, we can transform
it into a shape that makes sense for our domain model and take action on it.

Individual domain events might not mean too much by themselves, and it might be they represent
only a small part of longer-running tasks. We therefore might need to chain multiple events and
systems together to yield the outcome we want. An example is provided here:

Figure 7.5 – A pipeline of domain events

In this example, you can see how a long-running process starts with us initiating a long-running task
that goes through a series of pipeline steps before it becomes useful at the end.

Pipelining such as this is powerful as the system is very flexible. For example, it might be that
another system is interested in the addressesMatched event and can subscribe from there. It might
also be in the future we want to adapt this pipeline to add a new business requirement. For example,
maybe we have a requirement that if addressesMatched < 500, we trigger a smaller more lightweight
process. This would be very easy for us to add.

One major problem event-driven systems face is the distributed nature of the data. For example, if I
have a long-running process such as that defined previously, and someone changes their address mid-
way through the process, how do we handle that? What if the change they made means we need to
cancel our process to ensure the business requirements remain enforced in our system? Let’s explore
a couple of patterns for dealing with this problem.

Dealing with failure
Earlier in this chapter, we discussed the CAP theorem and the concept of having to choose which
compromises in our system to make. Alongside this, we must expect that our distributed system will
fail due to both factors outside of our control and edge-case failure modes that we accept can happen
from time to time, but we accept that risk in favor of delivery speed. Next, we will discuss some
patterns we can put in place to mitigate some of these failures.

Two-phase commit (2PC)

As we discussed earlier, consistency is equally (if not more so) important in a distributed system as it
is in a monolithic architecture. However, it is near impossible to create distributed transactions and
commit atomically. One approach to solve this is to split our work into two phases:

Preparation phase: We ask each of our sub-systems if it can promise to do the workload we want to complete.

Completion phase: Tell each sub-system to do the work it just promised to do.

In the preparation phase, each of the sub-systems will complete whatever action is necessary to
ensure it can keep its promise. In a lot of situations, this is putting a lock around a resource. If any of
the participants cannot make this commitment, or if a specified time interval passes without hearing
from the coordinator, the workload is aborted.

A diagram of how this looks conceptually is provided here:

Figure 7.6 – 2PC in action

2PC is a useful pattern to be aware of when building a domain-driven system. Remember—our job as
engineers, and especially those who have committed to working in a domain-driven way, is to ensure
the system reflects the business domain model as closely as possible. If something goes wrong, the
2PC has a compensating control (the rollback) that helps to ensure that business invariants are not
broken. The biggest disadvantage of the 2PC is the fact that it’s a blocking protocol. This means in
the best case we lose some of the concurrency ability within our system, and in the worst case, no
work can be completed at all until the lock is released (either manually or when a pre-specified
threshold expires). There are a few other patterns that aim to improve on this, one of which is the
saga pattern.

The saga pattern

The saga pattern aims to allow us to achieve consistency within a distributed system without
preventing concurrency.

The basic principle of the saga pattern is a simple one; for each action we take within our system, we
also define a compensating action that we call in the event we need to roll back.

Let’s look at an example. The following diagram shows the flow of an order being created through to
customer notification:

Figure 7.7 – What a saga pattern might look like for an e-commerce system

The blue hexagons represent the happy path. If all goes well, we will simply move from step 1
through to 5 where our order is complete. However, if the system fails at any point, we roll back all
the actions before it. Therefore, if the update inventory failed, we would call rollback inventory,
cancel payment, and cancel the order. If all these steps successfully resolve or roll back, we should
have a consistent system.

The obvious flaw here is this: what if our compensating controls fail too? This is where we can
combine the saga pattern with an EDA (that we mentioned previously) and emit an event for
compensating control. This means it can be retried by consumer services at their own pace and using
their own patterns.

Implementing a resilient saga pattern is challenging and beyond the scope of this book. However, a
naïve implementation that can hopefully serve as a useful reference and starting point might look like
this:

package chapter7

import "context"

type Saga interface {

 Execute(ctx context.Context) error

 Rollback(ctx context.Context) error

}

type OrderCreator struct{}

func (o OrderCreator) Execute(ctx context.Context) error {

 return o.createOrder(ctx)

}

func (o OrderCreator) Rollback(ctx context.Context) error {

 //Rollback Saga here

 return nil

}

func (o OrderCreator) createOrder(ctx context.Context) error {

 // Create Order here

 return nil

}

type PaymentCreator struct{}

func (p PaymentCreator) Execute(ctx context.Context) error {

 return p.createPayment(ctx)

}

func (p PaymentCreator) Rollback(ctx context.Context) error {

 //Rollback Saga here

 return nil

}

func (p PaymentCreator) createPayment(ctx context.Context) error {

 // Create payment here

 return nil

}

type SagaManager struct {

 actions []Saga

}

func (s SagaManager) Handle(ctx context.Context) {

 for i, action := range s.actions {

 if err := action.Execute(ctx); err != nil {

 for j := 0; j <= i; j++ {

 if err := s.actions[j].Rollback(ctx); err != nil {

 // One of our compensation actions failed; we need to handle it (perhaps by

emitting a message to a

 // a messagebus.

 }

 }

 }

 }

}

In the preceding code block, we declare an interface called Saga. Anything that has an Execute
function that returns an error and a Rollback function that returns an error satisfies our Saga interface.
For demonstration purposes, I have declared OrderCreator and PaymentCreator structs that satisfy
this interface. Finally, I create a struct called a SagaManager and create a Handle function.

In this Handle function, I range over all the registered actions. If none of them returns an error, we
can assume the saga is complete and our system is in a consistent state. If one of them fails, we call
Rollback on each of the actions we executed so far. In the simple example, we do not take an action if
the rollback fails, but you may want to trigger an alert in this instance to notify an engineer that the
system is not in a consistent state, or perhaps emit an event to a message bus that allows you to retry
the rollback later.

We have used the term message bus a few times so far, so let’s review what we mean by that phrase.

What is a message bus?
The term message bus originates from enterprise architecture patterns. The pattern aims to:

Create a common data model and command set shared through a set of shared interfaces

Allow decoupling of applications so that old ones could be taken away and new ones added with minimal disruption

A shared file could technically satisfy the definition of a message bus (and that is kind of what Kafka
is).

In modern software development, we have many different flavors of message buses at our disposal.
Purists may argue that some of the tools suggested here aren’t technically message buses—they are
message queues. The distinction is that the definition of message bus does not say anything about
guaranteed ordering or other queue-like semantics. Truthfully, I think it’s unimportant, and it’s more
important to ensure you pick the correct tool for what you are trying to achieve. Next, I have included
a few popular message bus options and a short summary of why you might or might not use them. I
hope this is useful as a jumping-off point for further discovery.

Kafka

Kafka is open sourced by the Apache Software Foundation (ASF). It was originally created by
Linkedin and has become incredibly popular due to its versatility in use. Kafka can be scaled to
achieve millions of requests per second and is popular at internet-scale companies such as Microsoft
and Cloudflare due to its ability to scale and keep latency low, while also being fault-tolerant.

A typical Kafka architecture looks like this:

Figure 7.8 – Architecture of Kafka

Firstly, we have a broker. This is responsible for storing messages sent in topics. Topics can be split
into many partitions.

Producers are services that connect to Kafka to send messages. They will specify a target a topic and
a partition.

Consumers subscribe to topics and partitions to read messages. We can group multiple instances of a
consumer together for scalability reasons. They will work together to read all messages from a topic
in what is called a consumer group. Services can be both consumers and producers. For example, you
might consume from one topic, do some processing, and produce to another.

One challenge of Kafka is that you must know quite a lot about it to use it effectively, and it’s easy to
make mistakes that can have dire consequences for your application (for example, you can very
easily cause messages to be delivered out of order if you use the wrong partitioning strategy).
Furthermore, monitoring it can be difficult, and running your own cluster is not for the faint of heart.

RabbitMQ

RabbitMQ is also an open source queuing system based on the AMQP protocol. It is easy to get
started with and conceptually is simple. Messages are sent by producers to an exchange, which
forwards them to one or many queues. Once a message has been read from a queue and
acknowledged by a producer application, it is consumed and will never be received again. RabbitMQ
comes packaged with a nice UI that gives you some visibility into what is happening.

Here’s an example overview of the Admin dashboard:

Figure 7.9 – RabbitMQ Admin dashboard

RabbitMQ’s architecture shares some similarities with Kafka’s:

Figure 7.10 – Architecture of RabbitMQ

The publisher sends messages to an exchange. Based on the routing key, it is sent to a specific queue
where is it picked up by a consumer application to process.

The disadvantages of RabbitMQ are mostly that it doesn’t scale quite as well or as easily as Kafka. It
also only offers a subset of the features that Kafka does. In my experience, as companies scale both in
terms of workloads and teams, they start to want a richer feature set and usually start exploring
migrating to Kafka.

NATS

Neural Autonomic Transport System (NATS) is an open source streaming system written in
Golang. This makes it a great option for learning more about how some of these technologies work
under the hood as the code is very readable.

NATS has some similarities with Kafka, in that you publish messages to subjects, and they are
consumed by subscribers. One nice feature of NATS is the ability to wildcard match on topics such as
those shown here:

Figure 7.11 – Architecture of NATS

The biggest thing you need to consider when using NATS is its durability. NATS guarantees at-most-
once delivery, which is to say your message might never be delivered at all. However, in return for
this, you get an incredibly simple-to-run streaming system. Due to how lightweight it is and its speed,
it is commonly used for IoT use cases.

Summary
The goal of this chapter was to highlight that DDD is not the entire story, and there are patterns and
tools out there that can help you navigate the complexity you may experience as you work on bigger
systems. We barely scratched the surface of most of these topics, so I have included further reading
next that will hopefully help you explore some of these topics deeper if they interest you.

Further reading

CAP theorem: https://en.wikipedia.org/wiki/CAP_theorem

Using Kafka at scale: https://blog.cloudflare.com/using-apache-kafka-to-process-1-trillion-messages/

Getting started with RabbitMQ: https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-rabbitmq.html

NATS overview: https://docs.nats.io/nats-concepts/overview

https://en.wikipedia.org/wiki/CAP_theorem
https://blog.cloudflare.com/using-apache-kafka-to-process-1-trillion-messages/
https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://docs.nats.io/nats-concepts/overview

8

TDD, BDD, and DDD
We have now covered all the core concepts of domain-driven design (DDD). However, you will
often see the suite of acronyms that make up this chapter’s title in the same sentence, especially on
job postings and résumés. What do they mean? Are they related to DDD?

In this chapter, we will do the following:

Discuss and give examples of TDD and BDD using Go

Talk about how TDD and BDD can be used alongside DDD to make your systems more resilient and maintainable

Technical requirements
In this chapter, we will write a large amount of Golang code. To be able to follow along, you will
need the following:

Golang installed on your machine. You can find instructions to install it here: https://go.dev/doc/install. The following code was
written with Go 1.19.3 installed, so anything later than this should be fine.

Some sort of text editor or IDE. Some popular options are Visual Studio Code (https://code.visualstudio.com/download) or
GoLand (https://www.jetbrains.com/help/go/installation-guide.html). All screenshots in this section are taken from GoLand.

Access to GitHub. All code for this section can be found here: https://github.com/PacktPublishing/Domain-Driven-Design-with-
GoLang/tree/main/chapter8.

TDD
TDD stands for test-driven development. It is a process in which you write tests for business
requirements before your software is fully developed. As you write code, you repeatedly update your
test cases until you are satisfied the code satisfies the business requirements. The goal is to write “just
enough” code to pass the tests and no more. A diagram representing this process is shown here:

https://go.dev/doc/install
https://code.visualstudio.com/download
https://www.jetbrains.com/help/go/installation-guide.html
https://github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/tree/main/chapter8

Figure 8.1 – TDD flow chart

Let’s look at each of the steps in isolation. If we were developing a new feature for our application,
we would do the following:

1. Add a test: Before we write any code, we write the test case. You might write this in the form of a user story such as “As an API
user, I want to be able to see a user’s balance across all their accounts when I call the /balances endpoint so that I can display it
on the home screen,” or by using the Given-When-Then method: “Given I am an API user, when I call /balances, I get a user’s
balances across all accounts.”

As you can see, we have not written a single line of code yet, and we are focusing deeply on the
business requirements. This should hopefully highlight immediately why TDD and DDD are
complementary patterns.

2. Run the test we just wrote. It should fail (and we should expect it to): This proves that the expected behavior isn’t already
available in our code, that our testing framework is set up correctly, and rules out the possibility that we wrote a flawed test that is
always going to pass.

3. Write as little code as possible to pass the test: This is not the time to write elegant code. At this stage, spaghetti code or
confusing, inefficient code is welcome. The goal is to get that test case passing by any means necessary while solving for the
business invariant.

4. Rerun the tests – the new one and all the previous ones should now pass: This validates that the code we have written not only
solves the new behavior but also didn’t break existing behavior.

5. Refactor: Now that we have added our new feature, it’s time to revisit the spaghetti code we wrote to pass the test and make it
beautiful and ready for code review. With each change we make, we can rerun the test suite to ensure our refactor did not change
behavior.

That’s all there is to TDD. It can also be used to debug or improve legacy code. For example, you
could write tests to give yourself confidence that the code works as you expect and then refactor it to
ensure the tests still pass.

Now that we understand TDD in principle, let’s imagine we were given this ticket to complete:

Title: As a customer, when I purchase a cookie, I get an email receipt.

Description: Customers like to purchase cookies. They also like to claim them as a business expense.
We need to add support for purchasing a cookie and sending an email receipt to a customer.

This is the acceptance criteria:

Given that a user tries to purchase a cookie and we have them in stock when they tap their card, they get charged and then receive
an email receipt a few moments later

Given that a user tries to purchase a cookie and we don’t have any in stock, we return an error to the cashier so they can
apologize to the customer

Given that a user tries to purchase a cookie and we have them in stock, but their card gets declined, we return an error to the
cashier so that we can ban the customer from the store

Given that a user purchases a cookie and we have them in stock, their card is charged successfully, but we fail to send an email,
we return a message to the cashier so they can notify the customer that they will not get an email, but the transaction is still
considered complete

This ticket describes the expected user behaviors for us. Let’s look at how we might follow TDD step
by step to complete this task in Go.

Adding a test

Let’s make a new file called cookies_test.go, as well as cookies.go. Your directory should now look
as follows:

Figure 8.2 – Our directory structure after making our new files

Note how my IDE has detected that cookies_test.go is a test file and has highlighted it in green. This
is because, in Go, any file with _test.go is a test file. This means they will be ignored when you
compile your binary. Tests are first-class citizens in Go and TDD is very easy to implement, as you
will see!

In cookies_test.go, let’s add the following lines:

package chapter8_test

import "testing"

func Test_CookiePurchases(t *testing.T) {

 t.Run(`Given a user tries to purchase a cookie and we have them in stock,

 "when they tap their card, they get charged and then receive an email receipt a few

moments later.`,

 func(t *testing.T) {})

}

Firstly, you can see we have declared our package as chapter8_test. This is different from
cookies.go, which will be declared as in the chapter8 package. The reason I recommend doing this is
it ensures you test your code as a consumer. This is called black-box testing. Testing this way makes
your tests less brittle because you are not depending on specific implementation details, as they
should be private and we will not be able to access them.

Next, we declare a test function. In Go, Test functions start with Test_ and then usually the name of
the function we are testing. We haven’t made a function yet, so for now, I have called it
CookiePurchases. We might update this later. You’ll see that our function takes a parameter of type
*testing.T. This helps Go to identify your test functions and gives us some really helpful testing
utilities, which we will see shortly.

Next, we create a closure function using t.Run. This allows you to create sub-tests within a test
function and is simply used for grouping related tests. This is not necessary, and you’ll see a lot of
code that does not follow this approach. However, I really like it.

Note that I have named my test exactly what was in the acceptance criteria of our ticket. This is
where TDD really shows that it is a complementary approach to DDD. The latter is all about ensuring
our system is modeling a real-world domain. Ideally, our acceptance criteria should have come from
a domain expert. By writing tests like this, we are ensuring our code does match real-world
expectations, and it also serves as fantastic documentation for the next developer who comes along
and works on our code.

Before we move on to step 2, we will add one more line to our test:

func Test_CookiePurchases(t *testing.T) {

 t.Run(`Given a user tries to purchase a cookie and we have them in stock,

 "when they tap their card, they get charged and then receive an email receipt a few

moments later.`,

 func(t *testing.T) {

 t.FailNow()

 })

}

We have added t.FailNow(). Why did we do this? In Go, if a test is empty, it passes immediately.
This means we will break our rule that says, “The test should fail.” It also signifies both to our future
selves and any other engineers who may work on the code base that this test is incomplete, and we
intend to implement it. If you had thousands of tests in your code base and you left this one empty
and passing, it could get overlooked, and you could end up with a gap in your testing. Finally, it
proves that when we run it in a moment, the Go test harness is set up correctly.

Run the test we just wrote – it should fail (and we
should expect it to)

Let’s run our test. In GoLand, I do this by clicking the gutter icon, as seen here. However, you can
also run tests from the command line by running go test ./….

Figure 8.3 – Running a test in GoLand by clicking on the left-hand gutter

You will see output such as the following:

=== RUN Test_CookiePurchases

===

RUN Test_CookiePurchases/Given_a_user_tries_to_purchase_a_cookie_and_we_have_them_in_stock

,____"when_they_tap_their_card,_they_get_charged_and_then_receive_an_email_receipt_a_few_mom

ents_later.

--- FAIL: Test_CookiePurchases (0.00s)

 --- FAIL:

Test_CookiePurchases/Given_a_user_tries_to_purchase_a_cookie_and_we_have_them_in_stock,____"

when_they_tap_their_card,_they_get_charged_and_then_receive_an_email_receipt_a_few_moments_l

ater. (0.00s)

FAIL

Process finished with the exit code 1

Great, our test is failing! Let’s move on to step 3.

Write as litt le code as possible to pass the test

We currently have not written any code at all. In cookies.go, let’s write the minimum code possible
that satisfies the test criteria. The following is my attempt, but as an exercise, please attempt it
yourself. Remember that the goal here isn’t beautiful code; it’s to get the test passing.

Here is what I wrote:

package chapter8

import "context"

type (

 EmailSender interface {

 SendEmailReceipt(ctx context.Context, emailAddress string) error

 }

 CardCharger interface {

 ChargeCard(ctx context.Context, cardToken string, amountInCents int) error

 }

 CookieStockChecker interface {

 AmountInStock(ctx context.Context) int

 }

 CookieService struct {

 emailSender EmailSender

 cardCharger CardCharger

 stockChecker CookieStockChecker

 }

)

func NewCookieService(e EmailSender, c CardCharger, a CookieStockChecker) (*CookieService,

error) {

 return &CookieService{

 emailSender: e,

 cardCharger: c,

 stockChecker: a,

 }, nil

}

func (c *CookieService) PurchaseCookies(ctx context.Context, amountOfCookiesToPurchase int)

error {

 //TODO: ask how much cookies cost. This is a placeholder.

 priceOfCookie := 5

 cookiesInStock := c.stockChecker.AmountInStock(ctx)

 if amountOfCookiesToPurchase > cookiesInStock {

 //TODO: what do I do in this situation?

 }

 cost := priceOfCookie * amountOfCookiesToPurchase

 //TODO: where do I get cardtoken from?

 if err := c.cardCharger.ChargeCard(ctx, "some-token", cost); err != nil {

 //TODO: handle this later.

 }

 if err := c.emailSender.SendEmailReceipt(ctx, "some-email"); err != nil {

 //TODO: handle error later

 }

 return nil

}

Note that as I wrote the code, I put lots of TODO comments and left notes to myself to either
implement functionality later or to check with our domain expert about how they see a specific
situation being handled. We will revisit that shortly, but for now, we are not concerned; let’s get our
test passing.

In my implementation, I defined some interfaces. We need some mocks of these interfaces to be able
to test our code. By mocking interfaces, it allows us to easily create situations in our code that might
be otherwise hard to achieve. For example, if we want to test a specific fork in our code when an
email doesn’t send, we can do that very easily and do not need to depend on setting up a buggy email
infrastructure. Furthermore, interfaces ensure that our code is decoupled from specific
implementations. For example, if we were using Google as our email provider and switched to AWS,
we would only need to change the adaptor package. (We covered the adaptor pattern earlier in this
book.)

The Go team provides a mocking framework called gomock. You can read more about it here:
https://github.com/golang/mock. gomock allows you to generate all the code you need to mock an
interface. Let’s generate mocks for ours now. To do this, we create gen.go at the root of our project
and add the following:

package gen

import _ "github.com/golang/mock/mockgen/model"

//go:generate mockgen -package mocks -destination chapter8/mocks/cookies.go

github.com/PacktPublishing/Domain-Driven-Design-with-GoLang/chapter8

CookieStockChecker,CardCharger,EmailSender

You can find more instructions on how this works in the gomock README file. Your gen.go file might
look a little different, depending on how you solved the task. Furthermore, if you want to write
manual mocks, then that is fine too.

To generate the mocks, we run go generate ./….

If all goes well, we should now see a new directory, as follows:

Figure 8.4 – After generation, the mocks folder should be created

Let’s now update our test:

func Test_CookiePurchases(t *testing.T) {

 t.Run(`Given a user tries to purchase a cookie and we have them in stock,

 "when they tap their card, they get charged and then receive an email receipt a few

moments later.`,

 func(t *testing.T) {

 var (

 ctrl = gomock.NewController(t)

 e = mocks.NewMockEmailSender(ctrl)

 c = mocks.NewMockCardCharger(ctrl)

 s = mocks.NewMockCookieStockChecker(ctrl)

 ctx = context.Background()

)

 cookiesToBuy := 5

 totalExpectedCost := 25

 cs, err := chapter8.NewCookieService(e, c, s)

 if err != nil {

 t.Fatalf("expected no error but got %v", err)

 }

 gomock.InOrder(

 s.EXPECT().AmountInStock(ctx).Times(1).Return(cookiesToBuy),

 c.EXPECT().ChargeCard(ctx, "some-token",

totalExpectedCost).Times(1).Return(nil),

 e.EXPECT().SendEmailReceipt(ctx, "some-email").Times(1).Return(nil),

)

 err = cs.PurchaseCookies(ctx, cookiesToBuy)

 if err != nil {

 t.Fatalf("expected no error but got %v", err)

https://github.com/golang/mock

 }

 })

}

In the preceding snippet, we have created instances of the mocks we generated. These mocks satisfy
the interfaces we need, so we can call NewCookieService. We then use a utility function of gomock,
which allows us to ensure that the interface functions are called only once and with the exact
parameters we expect. Finally, we call PurchaseCookies and make sure we get no error.

This test passes and satisfies the criteria outlined in the test description, but we left lots of TODO
comments for things we need to clarify with our domain experts. The following outlines the questions
I had and the answers the domain expert gave.

Q: How much do cookies cost? Does it ever change?

A: Cookies cost 50 cents. That could change in the future, but for now, they will be that much.

Q: In the event that someone wants to purchase more cookies than we have in stock, what
should we do?

A: We should give them the ones we have in stock.

Q: How do we find a user’s card token? Does another team provide this, or do we need to build
this functionality?

A: When a customer presents their card, our card machine automatically gives us the token.
Therefore, we should have access to the card token.

Q: How do we find a user’s email address?

A: We receive it from the machine automatically, like we do the card token.

Great! We now have learned more about how our system should operate. We should ensure we have
test cases that cover these scenarios too. Let’s write them now while we remember.

Our test file now has the following test stubs in it (in addition to the one we filled in):

t.Run(`Given a user tries to purchase a cookie and we don't have any in stock, we return an

error to the cashier

 so they can apologize to the customer.`, func(t *testing.T) {

})

t.Run(`Given a user tries to purchase a cookie, we have them in stock, but their card gets

declined, we return

 an error to the cashier so that we can ban the customer from the store.`, func(t

*testing.T) {

})

t.Run(`Given a user purchases a cookie and we have them in stock, their card is charged

successfully but we

 fail to send an email, we return a message to the cashier so they know can notify the

customer that they will not

 get an e-mail, but the transaction is still considered done.`, func(t *testing.T) {

})

t.Run(`Given someone wants to purchase more cookies than we have in stock we only charge

them for the ones we do have`,

 func(t *testing.T) {

 })

We can now move on to the final TDD step.

Refactoring

We can now refactor our code to make it neater. The only change I will make at this point is to
change cookiePrice to 50. This should make our test fail.

After changing cookiePrice to 50, I then run the test again:

--- FAIL: Test_CookiePurchases (0.00s)

===

RUN Test_CookiePurchases/Given_a_user_tries_to_purchase_a_cookie_and_we_have_them_in_stock

,____"when_they_tap_their_card,_they_get_charged_and_then_receive_an_email_receipt_a_few_mom

ents_later.

 cookies.go:42: Unexpected call to *mocks.MockCardCharger.ChargeCard([context.Background

some-token 250]) at /Users/matthewboyle/Dev/ddd-golang/chapter8/cookies.go:42 because:

 expected call at /Users/matthewboyle/Dev/ddd-golang/chapter8/cookies_test.go:35

doesn't match the argument at index 2.

 Got: 250 (int)

 Want: is equal to 25 (int)

This is what we expected. Let’s update our test to correct the expected totalPrice:

t.Run(`Given a user tries to purchase a cookie and we have them in stock,

 "when they tap their card, they get charged and then receive an email receipt a few

moments later.`,

 func(t *testing.T) {

 var (

 ctrl = gomock.NewController(t)

 e = mocks.NewMockEmailSender(ctrl)

 c = mocks.NewMockCardCharger(ctrl)

 s = mocks.NewMockCookieStockChecker(ctrl)

 ctx = context.Background()

)

 cookiesToBuy := 5

 totalExpectedCost := 250

 cs, err := chapter8.NewCookieService(e, c, s)

 if err != nil {

 t.Fatalf("expected no error but got %v", err)

 }

 gomock.InOrder(

 s.EXPECT().AmountInStock(ctx).Times(1).Return(cookiesToBuy),

 c.EXPECT().ChargeCard(ctx, "some-token", totalExpectedCost).Times(1).Return(nil),

 e.EXPECT().SendEmailReceipt(ctx, "some-email").Times(1).Return(nil),

)

 err = cs.PurchaseCookies(ctx, cookiesToBuy)

 if err != nil {

 t.Fatalf("expected no error but got %v", err)

 }

 })

We run the test again and it passes.

Let’s fill in the other tests. Have a go at doing it yourself, and we will walk through the approach as
follows:

t.Run(`Given a user tries to purchase a cookie and we don't have any in stock, we return an

error to the cashier

 so they can apologize to the customer.`, func(t *testing.T) {

 var (

 ctrl = gomock.NewController(t)

 e = mocks.NewMockEmailSender(ctrl)

 c = mocks.NewMockCardCharger(ctrl)

 s = mocks.NewMockCookieStockChecker(ctrl)

 ctx = context.Background()

)

 cookiesToBuy := 5

 cs, err := chapter8.NewCookieService(e, c, s)

 if err != nil {

 t.Fatalf("expected no error but got %v", err)

 }

 gomock.InOrder(

 s.EXPECT().AmountInStock(ctx).Times(1).Return(0),

)

 err = cs.PurchaseCookies(ctx, cookiesToBuy)

 if err == nil {

 t.Fatal("expected an error but got none")

 }

})

This test fails when we run it, as it does not return early with an error, even though we return no
cookies in stock. Let’s write some code to ensure this test case passes.

I have added the following code:

func (c *CookieService) PurchaseCookies(ctx context.Context, amountOfCookiesToPurchase int)

error {

 priceOfCookie := 50

 cookiesInStock := c.stockChecker.AmountInStock(ctx)

 if cookiesInStock == 0 {

 return errors.New("no cookies in stock sorry :(")

 }

 if amountOfCookiesToPurchase > cookiesInStock {

 //TODO: what do I do in this situation?

 }

…

If we run the test again, it now passes. We should also run the last test to ensure that it still passes too.
It does? Great!

Let’s fill in the next test:

t.Run(`Given a user tries to purchase a cookie, we have them in stock, but their card gets

declined, we return

 an error to the cashier so that we can ban the customer from the store.`, func(t

*testing.T) {

 var (

 ctrl = gomock.NewController(t)

 e = mocks.NewMockEmailSender(ctrl)

 c = mocks.NewMockCardCharger(ctrl)

 s = mocks.NewMockCookieStockChecker(ctrl)

 ctx = context.Background()

)

 cookiesToBuy := 5

 totalExpectedCost := 250

 cs, err := chapter8.NewCookieService(e, c, s)

 if err != nil {

 t.Fatalf("expected no error but got %v", err)

 }

 gomock.InOrder(

 s.EXPECT().AmountInStock(ctx).Times(1).Return(cookiesToBuy),

 c.EXPECT().ChargeCard(ctx, "some-token",

totalExpectedCost).Times(1).Return(errors.New("some error")),

)

 err = cs.PurchaseCookies(ctx, cookiesToBuy)

 if err == nil {

 t.Fatal("expected an error but got none")

 }

 if err.Error() != "your card was declined, you are banned!" {

 t.Fatalf("error was unexpected, got %v", err.Error())

 }

})

In this test, we are asserting that the call to charge the card fails and we get back a specific error text.
Let’s run the test.

It fails as expected with the following error:

=== RUN Test_CookiePurchases

--- FAIL: Test_CookiePurchases (0.00s)

===

RUN Test_CookiePurchases/Given_a_user_tries_to_purchase_a_cookie,_we_have_them_in_stock,_b

ut_their_card_gets_declined,_we_return____an_error_to_the_cashier_so_that_we_can_ban_the_cus

tomer_from_the_store.

 cookies.go:51: Unexpected call to

*mocks.MockEmailSender.SendEmailReceipt([context.Background some-email]) at

/Users/matthewboyle/Dev/ddd-golang/chapter8/cookies.go:51 because: there are no expected

calls of the method "SendEmailReceipt" for that receiver

This is because an error is never returned when we fail to charge the card. Let’s write the minimal
amount of code to fix this:

…

if amountOfCookiesToPurchase > cookiesInStock {

 //TODO: what do I do in this situation?

}

cost := priceOfCookie * amountOfCookiesToPurchase

//TODO: where do I get cardtoken from?

if err := c.cardCharger.ChargeCard(ctx, "some-token", cost); err != nil {

 return errors.New("your card was declined, you are banned!")

}

…

Let’s run our test again:

=== RUN Test_CookiePurchases

--- PASS: Test_CookiePurchases (0.00s)

===

RUN Test_CookiePurchases/Given_a_user_tries_to_purchase_a_cookie,_we_have_them_in_stock,_b

ut_their_card_gets_declined,_we_return____an_error_to_the_cashier_so_that_we_can_ban_the_cus

tomer_from_the_store.

 --- PASS:

Test_CookiePurchases/Given_a_user_tries_to_purchase_a_cookie,_we_have_them_in_stock,_but_the

ir_card_gets_declined,_we_return____an_error_to_the_cashier_so_that_we_can_ban_the_customer_

from_the_store. (0.00s)

PASS

Great! It now passes, and our other tests do too. Now is the time to do some refactoring if you want
to. I am happy enough with the code for now, so I’m going to move on to the next test:

t.Run(`Given a user purchases a cookie and we have them in stock, their card is charged

successfully but we

 fail to send an email, we return a message to the cashier so they know can notify the

customer that they will not

 get an e-mail, but the transaction is still considered done.`, func(t *testing.T) {

 var (

 ctrl = gomock.NewController(t)

 e = mocks.NewMockEmailSender(ctrl)

 c = mocks.NewMockCardCharger(ctrl)

 s = mocks.NewMockCookieStockChecker(ctrl)

 ctx = context.Background()

)

 cookiesToBuy := 5

 totalExpectedCost := 250

 cs, err := chapter8.NewCookieService(e, c, s)

 if err != nil {

 t.Fatalf("expected no error but got %v", err)

 }

 gomock.InOrder(

 s.EXPECT().AmountInStock(ctx).Times(1).Return(cookiesToBuy),

 c.EXPECT().ChargeCard(ctx, "some-token", totalExpectedCost).Times(1).Return(nil),

 e.EXPECT().SendEmailReceipt(ctx, "some-email").Times(1).Return(errors.New("failed to

send email")),

)

 err = cs.PurchaseCookies(ctx, cookiesToBuy)

 if err == nil {

 t.Fatal("expected an error but got none")

 }

 if err.Error() != "we are sorry but the email receipt did not send" {

 t.Fatalf("error was unexpected, got %v", err.Error())

 }

})

Hopefully, this test is clear to you at this point. We are again asserting that certain calls happen but
that our email fails to send, and we get a particular error text back.

Brief aside: at this point, I am certain some of you are screaming at me, “Why do you keep repeating
the same boilerplate code for setting up a test?! Doesn’t that break the don’t repeat yourself (DRY)
principle?!” You are, of course, correct; however, this is a pattern I have landed on after many years
of trying to make tests as succinct as code. I find that tests such as the preceding ones are the best
documentation we can have, and ensuring that every test has all the information you need to figure
out what it is doing outlined clearly is the best way to ensure other engineers (and your future self)
can get up to speed with the code base. It’s also the reason I am not a big proponent of table-driven
tests, which are popular in the Go community; I feel they prioritize speed for the writer of the code

rather than for the future reader. Code is written once but read many times, so we should always
prioritize the reader.

Back to our code. We simply add this line:

if err := c.emailSender.SendEmailReceipt(ctx, "some-email"); err != nil {

 return errors.New("we are sorry but the email receipt did not send")

}

This test now passes too.

Let’s move promptly on to the next test. The next one is a little bit more interesting:

t.Run(`Given someone wants to purchase more cookies than we have in stock we only charge

them for the ones we do have`,

 func(t *testing.T) {

 var (

 ctrl = gomock.NewController(t)

 e = mocks.NewMockEmailSender(ctrl)

 c = mocks.NewMockCardCharger(ctrl)

 s = mocks.NewMockCookieStockChecker(ctrl)

 ctx = context.Background()

)

 requestedCookiesToBuy := 5

 inStock := 3

 totalExpectedCost := 150

 cs, err := chapter8.NewCookieService(e, c, s)

 if err != nil {

 t.Fatalf("expected no error but got %v", err)

 }

 gomock.InOrder(

 s.EXPECT().AmountInStock(ctx).Times(1).Return(inStock),

 c.EXPECT().ChargeCard(ctx, "some-token", totalExpectedCost).Times(1).Return(nil),

 e.EXPECT().SendEmailReceipt(ctx, "some-email").Times(1).Return(nil),

)

 err = cs.PurchaseCookies(ctx, requestedCookiesToBuy)

 if err != nil {

 t.Fatalf("expected no error but got %v", err)

 }

 })

In this test, we are requesting a different number of cookies than are available. As per the domain
expert’s requirements, we need to only charge for the ones we have in stock and follow the regular
flow apart from that.

This test fails right now, as we are not handling this case:

=== RUN Test_CookiePurchases

--- FAIL: Test_CookiePurchases (0.00s)

===

RUN Test_CookiePurchases/Given_someone_wants_to_purchase_more_cookies_than_we_have_in_stoc

k_we_only_charge_them_for_the_ones_we_do_have

 cookies.go:47: Unexpected call to *mocks.MockCardCharger.ChargeCard([context.Background

some-token 250]) at /Users/matthewboyle/Dev/ddd-golang/chapter8/cookies.go:47 because:

 expected call at /Users/matthewboyle/Dev/ddd-golang/chapter8/cookies_test.go:159

doesn't match the argument at index 2.

 Got: 250 (int)

 Want: is equal to 150 (int)

Right now, we are charging for cookies we do not have in stock. Let’s fix this:

func (c *CookieService) PurchaseCookies(ctx context.Context, amountOfCookiesToPurchase int)

error {

 priceOfCookie := 50

 cookiesInStock := c.stockChecker.AmountInStock(ctx)

 if cookiesInStock == 0 {

 return errors.New("no cookies in stock sorry :(")

 }

 if amountOfCookiesToPurchase > cookiesInStock {

 amountOfCookiesToPurchase = cookiesInStock

 }

 cost := priceOfCookie * amountOfCookiesToPurchase

…

All we have done here is update amountOfCookiesToPurchase = cookiesInStock in the situation
where our request is greater. The test now passes!

If we run go test with code coverage now (go test ./... –cover), we will see we have 100%
coverage:

Figure 8.5 – 100% test coverage!

This puts us in a great spot to maintain this code going forward, which is ideal, as we are not quite
done yet. We have two requirements we have not implemented yet:

The domain expert told us we can expect to receive the card token as part of the request

The domain expert told us we can receive the email as part of the request

Let’s update our function signature to add both:

func (c *CookieService) PurchaseCookies(

 ctx context.Context,

 amountOfCookiesToPurchase int,

 cardToken string,

 email string,

) error {

This has broken all our tests, as we are now not passing the correct parameter. To fix this, let’s just
quickly add any old string to them, such as the following:

…

err = cs.PurchaseCookies(ctx, cookiesToBuy, "a-token", "an-email")

if err != nil {

 t.Fatalf("expected no error but got %v", err)

}

…

If we run our tests, they now all fail. This is because we hardcoded placeholder values for these. Let’s
update our code to make our final version of the function:

func (c *CookieService) PurchaseCookies(

 ctx context.Context,

 amountOfCookiesToPurchase int,

 cardToken string,

 email string,

) error {

 priceOfCookie := 50

 cookiesInStock := c.stockChecker.AmountInStock(ctx)

 if cookiesInStock == 0 {

 return errors.New("no cookies in stock sorry :(")

 }

 if amountOfCookiesToPurchase > cookiesInStock {

 amountOfCookiesToPurchase = cookiesInStock

 }

 cost := priceOfCookie * amountOfCookiesToPurchase

 if err := c.cardCharger.ChargeCard(ctx, cardToken, cost); err != nil {

 return errors.New("your card was declined, you are banned!")

 }

 if err := c.emailSender.SendEmailReceipt(ctx, email); err != nil {

 return errors.New("we are sorry but the email receipt did not send")

 }

 return nil

}

Here’s an example of the changes we need to make to each test:

t.Run(`Given a user tries to purchase a cookie and we have them in stock,

 "when they tap their card, they get charged and then receive an email receipt a few

moments later.`,

 func(t *testing.T) {

 var (

 ctrl = gomock.NewController(t)

 e = mocks.NewMockEmailSender(ctrl)

 c = mocks.NewMockCardCharger(ctrl)

 s = mocks.NewMockCookieStockChecker(ctrl)

 ctx = context.Background()

 email = "some@email.com"

 cardToken = "token"

)

 cookiesToBuy := 5

 totalExpectedCost := 250

 cs, err := chapter8.NewCookieService(e, c, s)

 if err != nil {

 t.Fatalf("expected no error but got %v", err)

 }

 gomock.InOrder(

 s.EXPECT().AmountInStock(ctx).Times(1).Return(cookiesToBuy),

 c.EXPECT().ChargeCard(ctx, cardToken, totalExpectedCost).Times(1).Return(nil),

 e.EXPECT().SendEmailReceipt(ctx, email).Times(1).Return(nil),

)

 err = cs.PurchaseCookies(ctx, cookiesToBuy, cardToken, email)

 if err != nil {

 t.Fatalf("expected no error but got %v", err)

 }

 })

In the preceding snippet, we have ensured that our mocks get called with the values passed into the
function.

You are now a TDD expert! Hopefully, the value of this iterative approach is clear to you, and you
can see how you can work with your domain experts to ensure you are iteratively testing and adding
the behavior of your domain. If you want to practice a little more, consider adding these requirements
to our code:

The card token cannot be empty and must be 12 characters long. In the event it’s empty, we should return an error.

The e-mail address must be a valid email, it cannot be empty, and we only support @gmail.com, @yahoo.com, and @msn.co.uk
domains. We should return an error if this is not true.

If today’s date is January 14, all purchases are free, as it’s our store’s birthday.

You may want to refactor the code a little bit and break some of this logic out into new functions.
However, you can do that in the “refactor step” after successfully implementing the functionality.

Now that we understand TDD and how we can use it alongside DDD, let’s look at behaviour-driven
development (BDD).

BDD
BDD is an extension of TDD that aims to enable deeper collaboration between engineers, domain
experts, and quality assurance engineers (if your company employs them). A diagram of how this
works with TDD is shown here.

mailto:@gmail.com
mailto:@yahoo.com
mailto:@msn.co.uk

Figure 8.6 – BDD as an extension of TDD

The goal of BDD is to provide a higher level of abstraction from code through a domain-specific
language (often referred to as a DSL) that can become executable tests. Two popular frameworks for
writing BDD tests is the use of Gherkin (https://cucumber.io/docs/gherkin/reference/) and Cucumber
(https://cucumber.io)

Gherkin defines a set of keywords and a language specification. Cucumber reads this text and
validates that the software works as expected. For example, the following is a valid Cucumber test:

Feature: checkout Integration

Scenario: Successfully Capture a payment

Given I am a customer

When I purchase a cookie for 50 cents.

Then my card should be charged 50 cents and an e-mail receipt is sent.

Some teams work with their domain experts to ensure their acceptance criteria in their ticketing
system are in this format. If it is, this criterion can simply become the test. This aligns nicely with
DDD.

Now that we have a high-level understanding of BDD, let’s take a look at implementing a test in Go.
We are going to use the go-bdd framework, which you can find at https://github.com/go-bdd/gobdd.

Firstly, let’s install go-bdd in our project:

go get github.com/go-bdd/gobdd

Now, create a features folder:

Figure 8.7 – Our features folder after creation

Inside the features folder, let’s add a file called add.feature with this inside it:

Feature: Adding numbers

 Scenario: add two numbers together

 When I add 3 and 6

 Then the result should equal 9

Next, let’s add an add_test.go file and the following:

package chapter8

import (

 "testing"

 "github.com/go-bdd/gobdd"

)

func add(t gobdd.StepTest, ctx gobdd.Context, first, second int) {

 res := first + second

 ctx.Set("result", res)

https://cucumber.io/docs/gherkin/reference/
https://cucumber.io/
https://github.com/go-bdd/gobdd

}

func check(t gobdd.StepTest, ctx gobdd.Context, sum int) {

 received, err := ctx.GetInt("result")

 if err != nil {

 t.Fatal(err)

 return

 }

 if sum != received {

 t.Fatalf("expected %d but got %d", sum, received)

 }

}

func TestScenarios(t *testing.T) {

 suite := gobdd.NewSuite(t)

 suite.AddStep(`I add (\d+) and (\d+)`, add)

 suite.AddStep(`the result should equal (\d+)`, check)

 suite.Run()

}

In the preceding code, we add a bdd step function called add. This function name is important; the
framework knows that when I add 3 and 6 gets mapped to this function. If you change the name of
this function to “sum”, you’d need to update the feature file to say, when I sum 3 and 6 together.
We then perform our logic and store it in the context so that we can recall it later.

We then define a check function that is our actual test; it validates our assertions. Finally, we set up a
test suite to run our code.

If you run the preceding test, it should pass.

This might be your first time seeing a BDD-style test, but I bet it’s not your first time seeing a unit
test. Why is that?

As you can see, although BDD tests are closer to natural language, it pushes a lot of the complexity
down into the tests. The preceding example we used is trivial, but if you want to express complex
scenarios (such as the cookie example we used previously) there is a lot of scaffolding the developer
needs to implement to make the tests work correctly. This can be worthwhile if you have lots of
access to your domain experts and you are truly going to work side by side. However, if they are
absent or not invested in the process, unit tests are much faster and more engaging for engineering
teams to work with. Much like DDD, BDD is a multidisciplinary team investment, and it is worth
ensuring you have buy-in from all stakeholders before investing too much time in it.

Summary
In this chapter, we have discussed TDD and BDD and explained how even though they are not
necessarily part of the DDD framework, they are certainly complementary patterns that are worth
knowing. Even on projects where you do not opt to follow DDD, it is worth following TDD.

Even on side projects, I often use TDD as a form of documentation. It means that if I do not work on
the project for multiple months, the tests help me jump straight back in.

Index

As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for
reference only, based on the printed edition of this book.

A

adapter layer 36

adapter pattern 121

Advanced Messaging Queuing Protocol (AMQP) protocol 139

aggregate pattern 53

order 53

team 54

wallet 54

aggregates 53, 54

beyond single bounded context 57

designing 56

discovering 55

Alpha 3 ISO-3166 format 116

Amazon Web Services (AWS) 134

anemic models 45-49

anti-corruption layer 36-38, 121-124

Apache Software Foundation (ASF) 145

application services 69-74

B

behaviour-driven development (BDD) 174-176

Big Blue Book 6

binary serialization 30

black-box testing 154

bounded context 20-22

anti-corruption layer 36-38

Open Host Service 22-24

published language 24, 25

buf

gRPC for Go with 32-35

reference link 32

C
CAP theorem 135-137

Cassandra 136, 137

charges, creating in Stripe

reference link 97

CoffeeCo system

CoffeeBux, paying with 98-101

infrastructure service, adding for payment handling 96, 97

product repository, implementing 93-95

scene, setting 81, 82

service, extending 108

store-specific discounts, adding 102-108

working with 83-93

Command Query Responsibility Segregation (CQRS) 8, 64, 137-139

continuous integration (CI) 30

create, read, update, delete (CRUD) 9

Cucumber

reference link 174

D
databases 135-137

DDD scorecard 9

distributed system 134, 135

characteristics 134, 135

failure, dealing with 141

distributed system patterns 137

CQRS 137-139

EDA 139-141

domain 14, 16

domain-driven design (DDD) 13

adoption 7, 8

applying, to monolithic application 109

history 3-5

pillars 6

scene, setting 14

strategic design 7

tactical design 7

ubiquitous language 6

using, scenarios 9, 10

domain events 140

domain model 7

domain services 66-68

E

entities

example 42-44

warning 45

working with 42

entity factories 63

event 139

event-driven architecture (EDA) 139-141

F
factory pattern 60-63

entity factories 63

G

Gang of Four (GoF) 5

behavioral patterns 6

creational patterns 5

structural patterns 6

Gherkin

reference link 174

Golang

repository pattern, implementing 63-66

GORM 49

URL 49

gRPC 30-32

for Go using buf 32-35

selecting 35

gRPC endpoints

reference link 35

H

human resources (HR) 4

I

identifiers

generating 44, 45

input and output (I/O) events 139

International Business Machines Corporation (IBM) 8

International Organization for Standardization (ISO) 116

ISO-8601 format 116

J
Java 4

K
Kafka 145, 146

challenge 146

M

message bus 145

Kafka 145, 146

NATS 148, 149

RabbitMQ 146-148

microservices 112

anti-corruption layer 121-124

benefits 113

characteristics 113

company, adopting 114

drawbacks 113, 114

recommendation system, building 116-121

scene, setting 114-116

service, exposing via open host service 124-131

minimum viable product (MVP) 82

Mongo 135

monolithic application/monolith 80

advantages 80

building, with domain-driven design principles 81

disadvantages 81

domain-driven design (DDD), applying to 109

N
Neural Autonomic Transport System (NATS) 148, 149

O
object-oriented design (OOD) 4

object-oriented (OO) code 4

object-oriented (OO) languages 138

object-relational mappings (ORMs) 49

OOD patterns 5

OO programming (OOP) 4

OpenAPI 25-30

selecting 35

Open Host Service 22-24

service, exposing via 124-131

P

partnership team 114

payments domain 16

protobuf 31

published language 24, 25

gRPC 30-32

OpenAPI 25-30

R
RabbitMQ 146-148

disadvantages 148

recommendations team 114

Remote Procedure Call (RPC) 23, 112

repositories 63

repository layer 64

repository pattern

implementing, in Golang 63-66

S

saga pattern 142-145

services 66

application services 69-74

domain services 66-68

single point of failure (SPOF) 136

Square

reference link 98

sub-domains 16

subscriptions domain 16

Swagger 25

Swagger Editor

reference link 27

T
test-driven development (TDD) 152

code, writing to pass test 153, 156-161

fail test, running 153-156

refactoring 153, 162-173

test, adding 152-155

test, rerunning 153

ticket

for user behaviors 153

two-phase commit (2PC) 141, 142

completion phase 141

preparation phase 141

U
ubiquitous language 16, 17

benefits 17-20

capture, ensuring 20

warning on application 20

unique identifier (UID) 139

universally unique identifiers (UUIDs) 44

user interface (UI) 70

V
value objects 53

working with 49-53

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you are
entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for
more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Event-Driven Architecture in Golang

Michael Stack

ISBN: 978-1-80323-801-2

https://packt.link/9781803238012

Understand different event-driven patterns and best practices

Plan and design your software architecture with ease

Track changes and updates effectively using event sourcing

Test and deploy your sample software application with ease

Monitor and improve the performance of your software architecture

Practical Microservices with Dapr and .NET - Second Edition

Davide Bedin

ISBN: 978-1-80324-812-7

https://packt.link/9781803248127

Use Dapr to create services, invoking them directly and via pub/sub

Discover best practices for working with microservice architectures

Leverage the actor model to orchestrate data and behavior

Expose API built with Dapr applications via NGINX and Azure API Management

Use Azure Kubernetes Service to deploy a sample application

Monitor Dapr applications using Zipkin, Prometheus, and Grafana

Scale and load test Dapr applications on Kubernetes

Get to grips with Azure Container Apps as you combine Dapr with a serverless platform

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Domain-Driven Design with Golang, we’d love to hear your thoughts! Scan the
QR code below to go straight to the Amazon review page for this book and share your feedback or
leave a review on the site that you purchased it from.

https://packt.link/r/1804613452

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

Download a free PDF copy of this book

https://packt.link/r/1804613452

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804613450

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804613450

	Domain-Driven Design with Golang
	Contributors
	About the author
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Share Your Thoughts
	Download a free PDF copy of this book

	Part 1: Introduction to Domain-Driven Design
	Chapter 1: A Brief History of Domain-Driven Design
	The world before DDD
	So, what are OOD patterns?

	Eric Evans and DDD
	Three pillars of DDD
	Adoption of DDD
	When should you use DDD?
	Summary
	Further reading

	Chapter 2: Understanding Domains, Ubiquitous Language, and Bounded Contexts
	Technical requirements
	Setting the scene
	Domains and sub-domains
	Ubiquitous language
	Benefits of ubiquitous language

	Bounded contexts
	Open Host Service
	Published language
	Anti-corruption layer

	Summary
	Further reading

	Chapter 3: Entities, Value Objects, and Aggregates
	Technical requirements
	Working with entities
	Generating good identifiers
	A warning when defining entities
	A note on object-relational mapping

	Working with value objects
	How should I decide whether to use an entity or value object?

	The aggregate pattern
	Discovering aggregates
	Designing aggregates
	Aggregates beyond a single bounded context

	Summary
	Further reading

	Chapter 4: Exploring Factories, Repositories, and Services
	Technical requirements
	Introducing the factory pattern
	Entity factories

	Implementing the repository pattern in Golang
	Understanding services
	Domain services
	Application services

	Summary

	Part 2: Real -World Domain-Driven Design with Golang
	Chapter 5: Applying Domain-Driven Design to a Monolithic Application
	Technical requirements
	What do we mean when we say monolithic application?
	Setting the scene
	Getting started with our CoffeeCo system
	Implementing our product repository
	Adding an infrastructure service for payment handling
	Paying with CoffeeBux
	Adding store-specific discounts
	Extending our service

	Summary
	Further reading

	Chapter 6: Building a Microservice Using DDD
	Technical requirements
	What do we mean by microservices?
	What are the benefits of microservices?
	What are the downsides of microservices?

	Should my company adopt microservices?
	Setting the scene (again)
	Building a recommendation system
	Revisiting the anti-corruption layer
	Exposing our service via an open host service
	Summary

	Chapter 7: DDD for Distributed Systems
	Technical requirements
	What is a distributed system?
	CAP theorem and databases

	Distributed system patterns
	CQRS
	EDA

	Dealing with failure
	Two-phase commit (2PC)
	The saga pattern

	What is a message bus?
	Kafka
	RabbitMQ
	NATS

	Summary
	Further reading

	Chapter 8: TDD, BDD, and DDD
	Technical requirements
	TDD
	Adding a test
	Run the test we just wrote – it should fail (and we should expect it to)
	Write as little code as possible to pass the test
	Refactoring

	BDD
	Summary

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book

